DOI QR코드

DOI QR Code

Bending behavior of laminated composite plates using the refined four-variable theory and the finite element method

  • Received : 2019.09.29
  • Accepted : 2019.06.10
  • Published : 2019.09.25

Abstract

The purpose of this work is to analyze the bending behavior of laminated composite plates using the refined fourvariable theory and the finite element method approach using an ANSYS 12 computational code. The analytical model is based on the multilayer plate theory of shear deformation of the nth-order proposed by Xiang et al 2011 using the theory principle developed by Shimpi and Patel 2006. Unlike other theories, the number of unknown functions in the present theory is only four, while five or more in the case of other theories of shear deformation. The formulation of the present theory is based on the principle of virtual works, it has a strong similarity with the classical theory of plates in many aspects, it does not require shear correction factor and gives a parabolic description of the shear stress across the thickness while filling the condition of zero shear stress on the free edges. The analysis is validated by comparing results with those in the literature.

References

  1. Antar, K., Amara, K., Benyoucef, S., Bouazza, M. and Ellali, M. (2019), "Hygrothermal effects on the behavior of reinforcedconcrete beams strengthened by bonded composite laminate plates", Struct. Eng. Mech., 69(3), 327-334. https://doi.org/10.12989/sem.2019.69.3.327. https://doi.org/10.12989/sem.2019.69.3.327
  2. Aydogdu, M. (2009), "A new shear deformation theory for laminated composite plates", Compos. Struct., 89, 94-101. https://doi.org/10.1016/j.compstruct.2008.07.008. https://doi.org/10.1016/j.compstruct.2008.07.008
  3. Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347. https://doi.org/10.12989/scs.2016.21.6.1347
  4. Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B.M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761. https://doi.org/10.12989/sem.2018.66.6.761
  5. Bhimaraddi, A. and Stevens, L.K. (1984), "A higher order theory for free vibration of orthotropic, homogeneous, and laminated rectangular plates", J. Appl. Mech., 51(1), 195-198. https://doi.org/10.1115/1.3167569. https://doi.org/10.1115/1.3167569
  6. Biswal, M., Sahu, S.K., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shellexperimental and FEM results", Steel Compos. Struct., 22(6), 1445-1463. http://dx.doi.org/10.12989/scs.2016.22.6.1445. https://doi.org/10.12989/scs.2016.22.6.1445
  7. Bouazza, M., Lairedj, A., Benseddiq, N. and Khalki, S. (2016), "A refined hyperbolic shear deformation theory for thermal buckling analysis of cross-ply laminated plates", Mech. Res. Commun., 73, 117-126. https://doi.org/10.1016/j.mechrescom.2016.02.015. https://doi.org/10.1016/j.mechrescom.2016.02.015
  8. Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal effects on the free vibration behavior of composite plate using nth-order shear deformation theory: a micromechanical approach", Iran J. Sci. Technol. Tran. Mech. Eng., 43(1), 61-73. https://doi.org/10.1007/s40997-017-0140-y. https://doi.org/10.1007/s40997-017-0140-y
  9. Ambartsumyan, S.A. (1969), Theory of Anisotropic Plate, Technomic Publishing.
  10. Bouazza, M. and Zenkour, A.M. (2018), "Free vibration characteristics of multilayered composite plates in a hygrothermal environment via the refined hyperbolic theory", Eur. Phys. J. Plus., 133, 217. https://doi.org/10.1140/epjp/i2018-12050-x
  11. Bouazza, M., Kenouza, Y., Benseddiq, N. and Zenkour Ashraf, M. (2017), "A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates", Compos Struct., 182, 533-541. https://doi.org/10.1016/j.compstruct.2017.09.041. https://doi.org/10.1016/j.compstruct.2017.09.041
  12. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/sem.2018.66.1.061. https://doi.org/10.12989/sem.2018.66.1.061
  13. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019. https://doi.org/10.12989/was.2019.28.1.019
  14. Bousahla, A.A., Benyoucef, S. Tounsi, A. and Mahmoud, S.R. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. http://dx.doi.org/10.12989/sem.2016.60.2.313. https://doi.org/10.12989/sem.2016.60.2.313
  15. Chen, X. and Xu, C. (2016), "Effect oflocal wall thinning on ratcheting behavior of pressurized $90^{\circ}$ elbow pipe under reversed bending using finite element analysis", Steel Compos. Struct., 20(4), 703-753. https://doi.org/10.12989/scs.2018.28.3.389.
  16. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289. https://doi.org/10.12989/sss.2017.19.3.289
  17. El-Abbasi, N. and Meguid, S.A. (2000), "A new shell element accounting for through thickness deformation", Comput. Meth. Appl. Mech. Eng., 189, 841-862. https://doi.org/10.1016/S0045-7825(99)00348-5. https://doi.org/10.1016/S0045-7825(99)00348-5
  18. Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on Pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113. https://doi.org/10.12989/sss.2018.21.1.113
  19. Fourn, H., Ait Atmane, H., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109. https://doi.org/10.12989/scs.2018.27.1.109
  20. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235. https://doi.org/10.12989/scs.2015.18.1.235
  21. Hanna, N.F. and Leissa, A.W. (1994), "A higher order shear deformationtheory for the vibration of thick plates", J. Sound Vib., 170(4), 545-555. https://doi.org/10.1006/jsvi.1994.1083. https://doi.org/10.1006/jsvi.1994.1083
  22. Hebali, H., Bakora, A., Tounsi, A. and Kaci, A. (2016), "A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates", Steel Compos. Struct., 22(3), 473-495. https://doi.org/10.12989/scs.2016.22.3.473. https://doi.org/10.12989/scs.2016.22.3.473
  23. Kar, V.R. and Panda, S.K. (2015a), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661. https://doi.org/10.12989/sem.2015.53.4.661
  24. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity", Int. J. Solid. Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9. https://doi.org/10.1016/S0020-7683(02)00647-9
  25. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis ofembedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/sem.2017.64.4.391. https://doi.org/10.12989/sem.2017.64.4.391
  26. Kim, D.N. and Bathe, K.J. (2008), "A 4-node 3D-shell element to model shell surface tractions and incompressible behavior", Comput. Struct., 86, 2027-2041. https://doi.org/10.1016/j.compstruc.2008.04.019. https://doi.org/10.1016/j.compstruc.2008.04.019
  27. Kim, S.E., Thai, H.T. and Lee, J. (2009), "Buckling analysis of plates using the two variable refined plate theory", Thin Wall. Struct., 47(4), 455-462. https://doi.org/10.1016/j.tws.2008.08.002. https://doi.org/10.1016/j.tws.2008.08.002
  28. Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A high-order theory of plate deformation. Part 2, Laminated plates", J. Appl. Mech., 44(4), 669-676. https://doi.org/10.1115/1.3424155. https://doi.org/10.1115/1.3424155
  29. Mantari, J.L, Oktem, A.S. and Guedes Soares, C. (2012), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B: Eng., 43, 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017. https://doi.org/10.1016/j.compositesb.2011.07.017
  30. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new andsimple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/scs.2017.25.2.157. https://doi.org/10.12989/scs.2017.25.2.157
  31. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852. https://doi.org/10.1177/1099636214526852
  32. Mindlin, R.D. (1951), "Inuence of rotary inertia and shear on exural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38.
  33. Nakasone, Y., Yoshimoto, S. and Stolarski, T.A. (2006), Engineering Analysis with Ansys Software, Elsevier, Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP30 Corporate Drive, Burlington.
  34. Narendar, S. (2011), "Buckling analysis of micro-/nano-scale plates based on two variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., 93(12), 3093-3103. https://doi.org/10.1016/j.compstruct.2011.06.028. https://doi.org/10.1016/j.compstruct.2011.06.028
  35. Noor, A.K. (1975), "Stability of multilayered composite plate", Fibre. Sci. Technol., 8, 81-89. https://doi.org/10.1016/0015-0568(75)90005-6. https://doi.org/10.1016/0015-0568(75)90005-6
  36. Pagano, N.J. (1970), "Exact solution for rectangular bidirectional composites and sandwich plates", J. Compos.Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102. https://doi.org/10.1177/002199837000400102
  37. Patel, S.N. (2014), "Nonlinear bending analysis of laminated composite stiffened plates", Steel Compos. Struct., 17(6), 867-890. http://dx.doi.org/10.12989/scs.2014.17.6.867. https://doi.org/10.12989/scs.2014.17.6.867
  38. Piscopo, V. (2010), "Refined buckling analysis of rectangular plates under uniaxial and biaxial compression", World Acad. Sci., Eng. Technol., 46, 554-561.
  39. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719. https://doi.org/10.1115/1.3167719
  40. Reddy, J.N. (1984), Energy and Variational Methods in Applied Mechanics, John Wiley and Sons, New York.
  41. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells, Theory and Analysis, 2nd Edition, CRC Press, New York.
  42. Reddy, J.N. and Phan, N.D. (1985), "Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory", J. Sound Vib., 98(2), 157-170. https://doi.org/10.1016/0022-460X(85)90383-9. https://doi.org/10.1016/0022-460X(85)90383-9
  43. Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77.
  44. Reza Barati, M. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707. https://doi.org/10.12989/sem.2016.60.4.707
  45. Rezaiee-Pajand, M. and Arabi, E. (2016), "A curved triangular element for nonlinear analysis of laminated shells", Compos. Struct., 153(1), 538-548. https://doi.org/10.1016/j.compstruct.2016.06.052. https://doi.org/10.1016/j.compstruct.2016.06.052
  46. Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2018), "A triangular shell element for geometrically nonlinear analysis", Acta Mechanica, 229(1), 323-342. https://doi.org/10.1007/s00707-017-1971-8. https://doi.org/10.1007/s00707-017-1971-8
  47. Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel Compos. Struct., 28(3), 389-401. http://dx.doi.org/10.12989/scs.2016.22.6.1445. https://doi.org/10.12989/SCS.2018.28.3.389
  48. Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018), "On the shell thickness-stretching effects using seven-parameter triangular element", Eur. J. Comput. Mech., 27(2), 163-185. https://doi.org/10.1080/17797179.2018.1484208. https://doi.org/10.1080/17797179.2018.1484208
  49. Rezaiee-Pajand, M., Shahabian, F. and Tavakoli, F.H. (2012), "A new higher-order triangular plate Bending element for the analysis of laminated composite and sandwich plates", Struct. Eng. Mech., 43(2), 253-271. https://doi.org/10.12989/sem.2012.43.2.253. https://doi.org/10.12989/sem.2012.43.2.253
  50. Senthilnathan, N.R., Chow, S.T., Lee, K.H. and Lim, S.P. (1987), "Buckling of shear-deformable plates", AIAA J., 25(9), 1268-1271. https://doi.org/10.2514/3.48742. https://doi.org/10.2514/3.48742
  51. Shaheen, Y.B., Mahmoud, A.M. and Refat, H.M. (2016), "Structural performance of ribbed ferrocement plates reinforced with composite materials", Struct. Eng. Mech., 60(4), 567-594. http://dx.doi.org/10.12989/sem.2016.60.4.567. https://doi.org/10.12989/sem.2016.60.4.567
  52. Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40(1), 137-46. https://doi.org/10.2514/2.1622. https://doi.org/10.2514/2.1622
  53. Shimpi, R.P. and Patel, H.G. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solid. Struct., 43(23), 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007. https://doi.org/10.1016/j.ijsolstr.2006.02.007
  54. Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta Mech., 94(3), 195-200. https://doi.org/10.1007/BF01176650. https://doi.org/10.1007/BF01176650
  55. Soldatos, K.P. and Timarci, T. (1993), "A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories", Compos. Struct., 25(1-4), 165-171. https://doi.org/10.1016/0263-8223(93)90162-J. https://doi.org/10.1016/0263-8223(93)90162-J
  56. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011. https://doi.org/10.1016/j.ijengsci.2011.11.011
  57. Thai, H.T. and Choi, D.H. (2012), "An efficient and simple refined theory for buckling analysis of functionally graded plates", Appl. Math. Model., 36(3), 1008-1022. https://doi.org/10.1016/j.apm.2011.07.062. https://doi.org/10.1016/j.apm.2011.07.062
  58. Thai, H.T. and Kim, S.E. (2010), "Free vibration of laminated composite plates using two variable refined plate theory", Int. J. Mech. Sci., 52, 626-633. https://doi.org/10.1016/j.ijmecsci.2010.01.002. https://doi.org/10.1016/j.ijmecsci.2010.01.002
  59. Touratier, M. (1991), "An efficient standard plate theory", Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y. https://doi.org/10.1016/0020-7225(91)90165-Y
  60. Whitney, J.M. and Sun, C.T. (1973), "A higher order theory for extensional motion of laminated composites", J. Sound Vib., 30(1), 85-97. https://doi.org/10.1016/S0022-460X(73)80052-5. https://doi.org/10.1016/S0022-460X(73)80052-5
  61. Xiang, S. and Kang, G.W. (2013b), "A nth-order shear deformation theory for the bending analysis on the functionally graded plates", Eur. J. Mech. A/Solid., 37, 336-343. https://doi.org/10.1016/j.euromechsol.2012.08.005. https://doi.org/10.1016/j.euromechsol.2012.08.005
  62. Xiang, S., Jiang, S.X., Bi, Z.Y., Jin, Y.X. and Yang, M.S. (2011b), "A nth-order meshless generalization of Reddy's third-order shear deformation theory for the free vibration on laminated composite plates", Compos. Struct., 93(2), 299-307. https://doi.org/10.1016/j.compstruct.2010.09.015. https://doi.org/10.1016/j.compstruct.2010.09.015
  63. Xiang, S., Jin, Y.X., Bi, Z.Y., Jiang, S.X. and Yang, M.S. (2011a), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93(11), 2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022. https://doi.org/10.1016/j.compstruct.2011.05.022
  64. Xiang, S., Kang, G.W. and Xing, B. (2012), "A nth-order shear deformation theory for the free vibration analysis on the isotropic plates", Meccanica, 47(8), 1913-1921. https://doi.org/10.1007/s11012-012-9563-0. https://doi.org/10.1007/s11012-012-9563-0
  65. Xiang, S., Kang, G.W., Yang, M.S. and Zhao, Y. (2013a), "Natural frequencies of sandwich plate with functionally graded face and homogeneous core", Compos. Struct., 96, 226-231. https://doi.org/10.1016/j.compstruct.2012.09.003. https://doi.org/10.1016/j.compstruct.2012.09.003
  66. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519. https://doi.org/10.12989/gae.2018.14.6.519