Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level

암석구성성분검층: 원리, 연구동향 및 향후 과제

  • Shin, Jehyun (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Hwang, Seho (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 신제현 (한국지질자원연구원 지질환경연구본부) ;
  • 황세호 (한국지질자원연구원 지질환경연구본부)
  • Received : 2019.08.19
  • Accepted : 2019.08.30
  • Published : 2019.08.31


Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples are traditionally used to understand formation composition and mineralogy, but it represents only part of formations. Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive techniques of some major service company. As regards domestic research and development, it has still remained an unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self-development status on borehole elemental concentration tools.


Supported by : 환경산업기술원


  1. Aboud, M., Badry, R., Grau, J., Herron, S., Hamichi, F., Horkowitz, J., Hemingway, J., MacDonald, R., Saldungaray, P., Stachiw, D., Stoller, C., and Williams, R. E., 2014, Highdefinition spetroscopy-determining mineralogic complexity, Oilfield Review, 26, 34-50.
  2. Baker, P. E., 1957, Neutron capture gamma-ray spectra of earth formations, SPE, 210, 97-101.
  3. Barson, D., Christensen, R., Decoster, E., Grau, J., Herron, M., Herron, S., Guru, U. K., Jordan, M., Maher, T. M., Rylander, E., and White, J., 2005, Spectroscopy: The key to rapid, reliable petrophysical answers, Oilfield Review, 17(2), 14-33.
  4. Craddock, P., Herron, S. L., Badry, R., Swager, L. I., Grau, J. A., Horkowitz, J. P., and Rose, D. A., 2013, Hydrocarbon saturation from total organic carbon logs derived from inelastic and capture nuclear spectroscopy, SPE Annual Technical Conference and Exhibition, 1-14.
  5. Culver, R. B., Hopkinson E. C., and Youmans, A. H., 1974, Carbon/Oxygen (C/O) logging instrumentation, SPEJ, 14(5), 463-470.
  6. Engesser, F. C., and Thompson, W. E., 1967, Gamma rays resulting from interactions of 14.7 MeV neutrons with various elements, J. Nuclear Energy, 21(6), 487-507.
  7. Freedman, R., Herron, S., Anand, V., Herron, M., May, D., and Rose, D., 2014, New method for determining mineralogy and matrix properties from elemental chemistry measured by gamma ray spectroscopy logging tools, SPE Annual Technical Conference and Exhibition, 1-16.
  8. Galford, J., Truax, J., Hrametz, A., and Haramboure, C., 2009, A new neutron-induced gamma-ray spectroscopy tool for geochemical logging, SPWLA 50th Annual Logging Symposium, 1-14.
  9. Gonzalez, J., Lewis, R., Hemingway, J., Grau, J., Rylander, E., and Schmitt, R., 2013, Determination of formation organic carbon content using a new neutron-induced gamma ray spectroscopy service that directly measures carbon, SPWLA 54th Annual Logging Symposium, 1-15.
  10. Grau, J. A., and Schweitzer, J. S., 1989, Elemental concentrations from thermal neutron capture gamma-ray spectra in geological formations, Nuclear Geophysics, 3(1), 1-9.
  11. Grau, J. A., Schweitzer, J. S., Ellis, D. V., and Hertzog, R. C., 1989, A geological model for gamma-ray spectroscopy logging measurements, Nuclear Geophysics, 3(4), 351-359.
  12. Grover, R., 2017, Tool enables complete cased-hole formation evaluation, reservoir saturation modeling, J. Pet. Technol., 69(10), 18-20.
  13. Herron, S. L., and Herron, M. M., 1996, Quantitative lithology: An application for open and cased hole spectroscopy, SPWLA 37th Annual Logging Symposium, 1-14.
  14. Herron, S. L., 1995, 1996, Method and apparatus for determining elemental concentrations for ${\gamma}ray$ spectroscopy tools, Process Control and Quality, 8, N28-N29.
  15. Hertzog, R. C., 1980, Laboratory and field evaluation of an inelastic neutron scattering and capture gamma ray spectrometry tool, SPEJ, 20(5), 1-14.
  16. Hertzog, R., Colson, L., Seeman, O., O'Brien, M., Scott, H., McKeon, D., Wraight, P., Grau, J., Ellis, D., Schweitzer, J., and Herron, M., 1989, Geochemical logging with spectrometry tools, SPE Formation Evaluation, 4(2), 153-162.
  17. Hwang, S., 2015, Gamma spectroscopy well logging for physical properties measurement in unconventional reservoirs, Ministry of Trade, Industry and Energy (in Korean).
  18. Hwang, S., Shin, J., Won, B., Kim, J., and Doh, T., 2018, Laboratory experiments of neutron induced gamma ray spectrometry tool, Conference of Near Surface Geoscience 2018, 24P2.
  19. Li, F., Han X., and Mendez, F., 2011, Sigma measurement and applications with a pulsed neutron mineralogy instrument, SPWLA 52th Annual Logging Symposium, 1-8.
  20. Lock, G. A., and Hoyer, W. A., 1974, Carbon-Oxygen (C/O) log: Use and interpretation, J. Pet. Technol., 26(9), 1044-1054.
  21. Millot, P., Wong, F. K., Rose, D. A., Zhou, T., Grover, R., Sundaralingam, S., Amin, F., Prasodjo, A., Johare, D., and Hui, K., 2017, Field test results in Malaysia wells of a newgeneration slim pulsed neutron logging tool, SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, 1-12.
  22. Muench, N. L., and Osoba, J. S., 1957, Identification of earth materials by induced gamma-ray spectral analysis, J. Pet. Technol., 9(3), 89-92.
  23. Pemper, R., Sommer, A., Guo, P., Jacobi, D., Longo, J., Bliven, S., Rodriguez, E., Mendez, F., and Han, X., 2006, A new pulsed neutron sonde for derivation of formation lithology and mineralogy, SPE Annual Technical Conference and Exhibition, 1-13.
  24. Quirein, J., Kimminau, S., LaVigne, J., Singer, J., and Wendel, F., 1986, A coherent framework for developing and applying multiple formation evaluation models, SPWLA 27th Annual Logging Symposium, 1-17.
  25. Radtke, R. J., Lorente, M., Adolph, B., Berheide, M., Fricke, S., Grau, J., Herron, S., Horkowitz, J., Jorion, B., Madio, D., May, D., Miles, J., Perkins, L., Philip, O., Roscoe, B., Rose, D., and Stoller, C., 2012, A new capture and inelastic spectroscopy tool takes geochemical logging to the next level, SPWLA 53th Annual Logging Symposium, 1-16.
  26. Rose, D., Zhou, T., Beekman, S., Quinlan, T., Delgadillo, M., Gonzalez, G., Fricke, S., Thornton, J., Clinton, D., Gicquel, F., Shestakova, I., Stephenson, K., Stoller, C., Philip, O., Marin, J., Mainier, S., Perchonok, B., and Bailly, J-P., 2015, An innovative slim pulsed neutron logging tool, SPWLA 56th Annual Logging Symposium, 1-23.
  27. Schultz, W. E., and Smith, H. D., 1974, Laboratory and field evaluation of a Carbon/Oxygen (C/O) well logging system, J. Pet. Technol., 26(10), 1103-1110.
  28. Shin, J., Hwang, S., Kim, G., Lee, G., Lee, S. H., Kim, K. Y., Park, I., and Jeon, J., 2018, Borehole elemental concentration logs for assessing subsurface environments, Proceedings of 2018 Korean Society of Soil and Groundwater environment Special Symposium, 57 (in Korean).
  29. Smith, C. P., Jeanneau, P., Maddever, R. A. M., Fraser, S. J., Rojc, A., Lofgrena, M. K., and Flahaut, V., 2015, PFTNA logging tools and their contributions to in-situ elemental analysis of mineral boreholes, wcsb7 proceedings, 157-164.
  30. Stoller, C., Adolph, B., Berheide, M., Brill, T., Clevinger, P., Crary, S., Crowder, B., Fricke, S., Grau, J., Hackbart, M., Herron, S., Jorion, B., Lorente, M., Madio, D., Miles, J., Philip, O., Radtke, R. J., Roscoe, B., Shestakova, I., Ziegler, W., and Menge, P. R., 2011, Use of $LaBr_3$ for downhole spectroscopic applications, IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 191-195.
  31. Tittman, J., and Nelligan, W. B., 1960, Laboratory studies of a pulsed neutron-source technique in well logging, J. Pet. Technol., 12(7), 63-66.
  32. Van Leof, E. V. D., Dorenbos, P., van Eijk, C. W. E., Kraemer, K., and Guedel, H. U., 2001, High-energy-resolution scintillator: $Ce^{3+}$ activated $LaBr_3$, Appl. Phys. Lett., 79(10), 1573-1475.
  33. Yan, W., Feng, M., Wang, Y., Liu, S., Li, K., Zhao, X., and Liang, W., 2018, The Application of a New Neutron Induced Gamma Ray Spectroscopy Tool in Evaluation the Shale Gas in Fuling Shale Gas Field, Open Journal of Yangtze Gas and Oil, 3, 93-103.
  34. Won, B., Hwang, S., Shin, J., Kim, J., Kim, K.-S., and Park, C. J., 2015, Neutron induced capture gamma spectroscopy sonde design and response analysis based on Monte Carlo simulation, Geophys. and Geophys. Explor., 18(3), 154-161 (in Korean with English abstract).