DOI QR코드

DOI QR Code

국사 광역화와 광코어 절감을 위한 파장분할다중 기반의 1기가급 수동 광가입자망 Reach Extender 효율 극대화 기술 개발

The Development of 1G-PON Reach Extender based on Wavelength Division Multiplexing for Reduction of Optical Core

  • 이규만 (건양대학교 기업소프트웨어학부) ;
  • 권택원 (건양대학교 융합IT학과)
  • Lee, Kyu-Man (Department of Enterprise Software, Konyang University) ;
  • Kwon, Taek-Won (Department of Convergence Information Technology, Konyang University)
  • 투고 : 2019.05.27
  • 심사 : 2019.08.20
  • 발행 : 2019.08.28

초록

인터넷을 비롯한 광대역 멀티미디어 수요가 폭발적으로 증가함에 따라 스마트폰, IPTV, VoIP, VOD, 클라우드 등의 새로운 서비스의 등장으로 유발된 데이터 통신량의 폭주로 가입자망의 고도화가 통신 산업에서 가장 큰 이슈가 되고 있다. 본 연구에서는 파장분할다중방식(Wavelength Division Multiplexing, WDM) 수동형 광가입자망(Passive Optical Network, PON)의 국사 광역화와 광코어 절감을 위한 1기가급 Reach Extender(RE) 기술에 대한 개발을 시도하였다. 특히, 시장 경쟁력을 강화하기 위하여 광부품의 저가화와 소형화, 집적화, 소비 전력 폭주를 대처하기 위한 저전력화 등을 고려하였다. 또한, 기존 PON망에 RE 기술을 이용하여 전송 거리 확장 기술 개발 및 광선로의 용량 증가 기술 개발을 통한 신뢰성 기술, 원격관리 기술을 통합하여 일괄 시스템 개발을 완료하였다. 개발 시스템을 이용하여 기존 상용 1G PON 장비들과의 시스템 연동을 기반으로 개발 시스템을 이용한 국사 광역화와 광코어 절감을 이룬 것에 그 가치를 둘 수 있다. 본 연구를 기반으로 10G PON 기술 개발에 대한 연구를 진행 중이다.

키워드

수동형 광가입자;파장분할다중방식;광코어 절감;국사 광역화;중계 장치

참고문헌

  1. H. H. Lee, S. H. Cho, J. H. Lee, S. I. Myong, & S. S. Lee. (2012). Recent Trends on Technology and Standardization of Next-Generation Optical Access Networks. 2012 Electronics and Telecommunications Trends, 27(2), 89-98,
  2. H. H. Lee, S. S. Lee & J. H. Lee. (2012). Recent Trends for Next Generation Optical Access Networks. 2012 Electronics and Telecommunications Trends, 27(3), 168-178.
  3. IITP. (2018). Wired and wireless communication service subscription status, https://www.iitp.kr.
  4. L. Kazovsky. (2011). Broadband optical access networks: emerging technologies and optical-wireless convergence. Hoboken : John Wiley & Sons
  5. J. H. Park, G. Y. Kim, H. J. Park & J. H. Kim. (2008). FTTH Deployment Status & Strategy in Korea: GW-PON Based FTTH Field Trial and Reach Extension Strategy of FTTH in Korea. In IEEE GLOBECOM 2008-2008 IEEE Global Telecommunications Conference, (pp. 1-3). IEEE.
  6. R. Roka. (2014). Analysis of Possible Exploitation for Long Reach Passive Optical Networks. SIMULTECH 2014, (pp. 195-202). IEEE.
  7. D. Hood & E. Trojer. (2012). Gigabit-capable passive optical networks. John Wiley & Sons.
  8. K. O. Kim, K. H. Doo, H. H. Lee, S. H. Kim, H. Park, J. Y. Oh & H. S. Chung. (2019). High Speed and Low Latency Passive Optical Network for 5G Wireless Systems. Journal of Lightwave Technology, 37(12), 2873-2882. https://doi.org/10.1109/JLT.2018.2866805
  9. F. An et al. (2013). SUCCESS-HPON : A Next-Generation Optical Access Architecture for Smooth Migration from TDM-PON to WDM-PON. IEEE Communications Magazine, 43(11), S40-S47
  10. M. E. Abdalla, S. M. Idrus & A. B. Mohammad. (2013). Hybrid TDM-WDM 10G-PON for high scalability next generation PON. ICIEA 2013, (pp. 1448-1450). IEEE.
  11. Y. C. Chung. (2013). High-speed coherent WDM PON for next-generation access network. ICTON 2013, (pp. 1-4). IEEE.
  12. J. D. Park, E. S. Jung, B. K. Kim, T. Y. Kim, J. J. Yoo, B. W. Kim & B. T. Kim. (2004). Wavelength Division Multiplexing Passive Optical Network Technology. Electronics and Telecommunications Trends, 19(6), 43-54.
  13. G. Kramer, B. Mukherjee & A. Maislos. (2008). Ethernet Passive Optical Networks. McGraw-Hill
  14. K. KwangOk & C. HwanSeok, (2015). Performance analysis by burst overhead length in symmetric-rate 10G-EPON reach extender. ICTC 2015, (pp. 1163-1166). IEEE.
  15. E. Karasan & E. Ayanoglu. (1998). Performance of WDM transport networks. IEEE Journal on Selected Areas in Communications, 16, 1081-1096. https://doi.org/10.1109/49.725180
  16. ETRI. (2005). ETRI Technical Evaluation Team MIC, FG-2005-03-18.