그림 1. 유클리디안 변환 테이블 Fig. 1 Euclidean transformation table
그림 2. K=4 일때 분류 샘플 유전자 표현 이미지 Fig. 2 K=4 classification sample gene expression image
그림 3. K-means, SOM, MKSV의 민감도 특이도 Fig 3. Sensitivity specificity of K-means, SOM and MKSV
DOI QR Code
We should give a realistic value on the large amounts of relevant data obtained from these studies to achieve effective objectives of the disease study which is dealing with various vital phenomenon today. In this paper, the proposed MKSV algorithm is estimated by optimal probability distribution, and the input pattern is determined. After classifying it into data mining, it is possible to obtain efficient computational quantity and recognition rate. MKSV algorithm is useful for studying the relationship between disease and gene in the present society by simulating the probabilistic flow of gene data and showing fast and effective performance improvement to classify data through the data mining process of big data.
그림 1. 유클리디안 변환 테이블 Fig. 1 Euclidean transformation table
그림 2. K=4 일때 분류 샘플 유전자 표현 이미지 Fig. 2 K=4 classification sample gene expression image
그림 3. K-means, SOM, MKSV의 민감도 특이도 Fig 3. Sensitivity specificity of K-means, SOM and MKSV