A Comparative Study on the Accuracy of Important Statistical Prediction Techniques for Marketing Data

마케팅 데이터를 대상으로 중요 통계 예측 기법의 정확성에 대한 비교 연구

  • Cho, Min-Ho (Dept. Computer System Engineering, JungWon University)
  • 조민호 (중원대학교 컴퓨터공학과)
  • Received : 2019.07.25
  • Accepted : 2019.08.15
  • Published : 2019.08.31


Techniques for predicting the future can be categorized into statistics-based and deep-run-based techniques. Among them, statistic-based techniques are widely used because simple and highly accurate. However, working-level officials have difficulty using many analytical techniques correctly. In this study, we compared the accuracy of prediction by applying multinomial logistic regression, decision tree, random forest, support vector machine, and Bayesian inference to marketing related data. The same marketing data was used, and analysis was conducted by using R. The prediction results of various techniques reflecting the data characteristics of the marketing field will be a good reference for practitioners.

KCTSAD_2019_v14n4_775_f0001.png 이미지

그림 1. 설문조사 데이터 모습(일부) Fig. 1 Part of survey data

KCTSAD_2019_v14n4_775_f0002.png 이미지

그림 2. 다항회귀 분석 결과 Fig. 2 Result of multinomial regression analysis

KCTSAD_2019_v14n4_775_f0003.png 이미지

그림 3. CART 알고리즘 적용 결과 Fig. 3 Result of CART algorithm

KCTSAD_2019_v14n4_775_f0004.png 이미지

그림 4. 조건부추론나무 적용 결과 Fig. 4 Result of conditional inference tree

KCTSAD_2019_v14n4_775_f0005.png 이미지

그림 5. 랜덤포레스트 분석 결과 Fig. 5 Result of random forest analysis

KCTSAD_2019_v14n4_775_f0006.png 이미지

그림 6. 방사형 방법 분석 결과 Fig. 6 Result of radial method Analysis

KCTSAD_2019_v14n4_775_f0007.png 이미지

그림 7. 선형 방법 분석 결과 Fig. 7 Result of linear method Analysis

KCTSAD_2019_v14n4_775_f0008.png 이미지

그림 8. 다항 방법 분석 결과 Fig. 8 Result of Polynomial method Analysis

KCTSAD_2019_v14n4_775_f0009.png 이미지

그림 9. 베이지안방법론 분석 결과 Fig. 9 Result of Bayesian method Analysis


  1. Y.Guo, Y. Liu, A. Oerlenmans, S. Lao, S. Wu, and M. Lew, "Deep learning for visual understanding : A review", Neurocomputing, vol. 187, 2016, pp. 27-48.
  2. S. Kotsiantis, "Decision trees:a recent overview", Artificial Intelligence Review, vol. 39, issue. 4, 2013, pp. 261-283.
  3. J. Peng, K. Lee, and C. Ingersoll, "An Introduction to Logistic Regression Analysis and Reporting", The Journal of Education Research, vol., 96. Sept. 2002, pp. 3-14..
  4. A. El-Habil, "An Application on Multinomial Logistic Regression Model", Pakistan journal of Statstics and operation Research, vol., 8. no. 2, Mar. 2012, pp. 271-291.
  5. S. Dreiseitl and L. Ohno-Machado, "Logistic regression and artificial neural network classification models: a methodology review", Journal of Biomedical Informatics, vol. 35, 2002, pp. 352-359.
  6. P. Bossaerts and P. Hillion, "Implementation Statistical Criteria to Select Return Forecasting Models:What Do We learn?," The Review of Financial Studies Summert, vol. 12, no. 2, 1999, pp. 405-428.
  7. J. Suykens and J. Vandewalle, "Least Squares Support Vector Machine Classifiers," Neural Processing Letters, vol., 9. June. 1999, pp. 293-300.
  8. B. Gupta, A. Rawat, A. Jain, A. Arora and N.Dhami, "Analysis of Various Decision Tree Algorithms for Classification in Data Mining," International Journal of Computer Applications, vol. 163, no. 8, Apr. 2017, pp. 15-19.
  9. L. Breiman, "Random Forests," Machine Learning, vol. 45, issue. 1, Oct. 2001, pp. 5-32.
  10. S. Kim and K. Suk, "Effective real-time identification using Bayesian statistical method gaze Network," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 3, 2016, pp. 331-338.
  11. Y. Bae and K. Park, "Performance Comparison of Machine Larning in the Various Kind of Prediction," J. of the Korea Institute of lectronic Communication Science, vol. 14, no. 1, 2019, pp. 169-178.
  12. W. Hauser, "Marketing analytics:the evolution of marketing research in the twenty-first century," Direct Marketing : An International Journal, vol., 1, no.1, Apr. 2007, pp. 38-54.