Contrast Enhancement Method using Color Components Analysis

컬러 성분 분석을 이용한 대비 개선 방법

  • Park, Sang-Hyun (Dept. Multimedia Engineering, Sunchon National University)
  • 박상현 (순천대학교 멀티미디어공학과)
  • Received : 2019.05.27
  • Accepted : 2019.08.15
  • Published : 2019.08.31


Recently, as the sensor network technologies and camera technologies develops, there are increasing needs by combining two technologies to effectively observe or monitor the areas that are difficult for people to access by using the visual sensor network. Since the applications using visual sensors take pictures of the outdoor areas, the images may not be well contrasted due to cloudy weather or low-light time periods such as a sunset. In this paper, we first model the color characteristics according to illumination using the characteristics of visual sensors that continuously capture the same area. Using this model, a new method for improving low contrast images in real time is proposed. In order to make the model, the regions of interest consisting of the same color are set up and the changes of color according to the brightness of images are measured. The gamma function is used to model color characteristics using the measured data. It is shown by experimental results that the proposed method improves the contrast of an image by adjusting the color components of the low contrast image simply and accurately.

KCTSAD_2019_v14n4_707_f0001.png 이미지

그림 1. 다양한 EV값을 촬영된 맥베스 컬러체커 Fig. 1. Macbeth colorcheckers using various EV’s

KCTSAD_2019_v14n4_707_f0002.png 이미지

그림 2. 관심영역 후보 예 Fig. 2 Region of interest candidates

KCTSAD_2019_v14n4_707_f0003.png 이미지

그림 3 제안하는 알고리즘의 블록 다이어그램 Fig. 3 Block diagram of the proposed algorithm

KCTSAD_2019_v14n4_707_f0004.png 이미지

그림 5. 입력 영상의 분할 Fig. 5 Segmentation of the input image

KCTSAD_2019_v14n4_707_f0005.png 이미지

그림 6. k-mean 군집화를 이용하여 선정된 관심 영역 Fig. 6 Selected regions of interest using k-mean clustering

KCTSAD_2019_v14n4_707_f0006.png 이미지

그림 7. 7개 영역의 R 채널 특성 Fig. 7 R channel characteristics of 7 regions

KCTSAD_2019_v14n4_707_f0007.png 이미지

그림 8. 채널 특성을 이용한 색상 값 보정 Fig. 8. Adjustment of a color value using channel characteristics

KCTSAD_2019_v14n4_707_f0008.png 이미지

그림 9. k-mean 군집화를 이용하여 선정된 15개의 관심 영역 Fig. 9 15 Selected regions of interest using k-mean clustering

KCTSAD_2019_v14n4_707_f0009.png 이미지

그림 10. 환경 감시 영상 (a) 해변, (b) 섬, (c) 호수, (d) 부두 Fig. 10 Images of environmental monitoring (a) beach, (b) island, (c) lake, (d) wharf

KCTSAD_2019_v14n4_707_f0010.png 이미지

그림 11. 대비 개선된 결과 영상 (a) 해변, (b) 섬, (c) 호수, (d) 부두 Fig. 11 Contrast enhanced resulting images (a) beach, (b) island, (c) lake, (d) wharf

KCTSAD_2019_v14n4_707_f0011.png 이미지

그림 12. 대비 개선된 결과 영상 (a) 해변, (b) 섬, (c) 호수, (d) 부두 Fig. 12 Contrast enhanced resulting images (a) beach, (b) island, (c) lake, (d) wharf


  1. B. Tavli, K. Bicakci, R. Zilan, and J. Barcelo-Ordinas, "A survey of visual sensor network platforms," Multimededia Tools and Applications, vol. 60, Oct. 2012, pp. 689-726.
  2. H. Jun and J. Kim, "Remote Multiple Senror Network System for Monitoring Conditions of Dairy Cow," Journal of Korean Institute of Information Technology, vol. 13, no. 3, Mar. 2015, pp. 85-93.
  3. P. Porambage, A. Heikkinen, E. Harjula, A. Gurtov, and M. Ylianttila, "Quantitative Power Consumption Analysis of a Multi-tier Wireless Multiemedia Sensor Network," In Proc. European Wireless, Oulu, Finland, May 2016, pp. 1-6.
  4. J. Park, S. Lee, and W. Oh, "Congestion Control Mechanism for Efficient Network Environment in WMSN," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 2, 2015, pp. 289-296.
  5. E. Eriksson, G. Dan, and V. Fodor, "Prediction-Based Load Control and Balancing For Feature Extraction in Visual Sensor Networks," In Proc. Acoustics, Speech, and Signal Processing, Florence, Italy, July 2014, pp. 674-678.
  6. S. Park, "Color Analysis and Binarization of River Image for River Surveillance," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 1, 2018, pp. 175-185.
  7. U. Kim, J. Lee, Y. Kim, K. Park, and Y. Moon, "Photographic Color Reproduction based on color variation characteristics of digital camera," Korean Institute of Information Technology Tran. on Internet and Information Systems, vol. 5, no. 11, 2011, pp. 2160-2174.
  8. J. Jia, J. Sun, C. Tang, and H. Shum, "Bayesian correction of image intensity with spatial consideration," In Proc. European Conf. Computer Vision, Berlin, 2004, pp. 342-354.
  9. J. Park, "Contrast Enhancement Method for Images from Visual Sensors," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 3, 2018, pp. 525-531.
  10. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, "SLIC superpixels compared to state-of-the-art superpixel methods."IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 11, 2012, pp. 2274-2282.
  11. H. Singh, N. Agrawal, A. Kumar, G. Singh, and H. Lee, "A novel gamma correction approach using optimally clipped sub-equalization for dark image enhancement." In Proc. IEEE International Conference on Digital Signal Processing, Beijing, China, Oct. 2016, pp. 497-501.