Theoretical Investigation on Collinear Phase Matching Stimulated Polariton Scattering Generating THz Waves with a KTP Crystal

Tan, Lian;Yuan, Bin;Li, Yongjun;Wang, Silei;Zhang, Hongtao;Bing, Pibin;Yao, Jianquan;Li, Zhongyang

  • Received : 2019.02.28
  • Accepted : 2019.05.24
  • Published : 2019.08.25


We present a theoretical research concerning terahertz (THz) wave generation with $KTiOPO_4$ (KTP) by collinear phase matching (CPM) stimulated polariton scattering (SPS). Both CPM and corresponding nonzero nonlinear coefficients can be simultaneously realized with $s{\rightarrow}f+f$ in yz plane, $s{\rightarrow}f+s$ with ${\theta}$ < ${\Omega}$ in xz plane and $s{\rightarrow}f+f$ with ${\theta}$ < ${\Omega}$ in xz plane. The effective nonlinear coefficients including electronic nonlinearities and ionic nonlinearities are calculated. Based on the parameter values of refractive indices, absorption coefficients and effective nonlinear coefficients, we simulate THz wave intensities generated with CPM SPS by solving coupled wave equations and give the relationship among the maximum THz wave intensity, optimal crystal length and the angle ${\theta}$. The calculation results demonstrate that CPM SPS with KTP can generate THz waves with high intensities and quantum conversion efficiencies.


Terahertz wave;Stimulated polariton scattering;$KTiOPO_4$


  1. K. Kawase, J. Shikata, and H. Ito, "Terahertz wave parametric source," J. Phys. D: Appl. Phys. 35, R1-R14 (2002).
  2. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, "THz polariton laser using an intracavity $Mg:LiNbO_3$ crystal with protective Teflon coating," Opt. Express 25, 3991-3999 (2017).
  3. H. Jang, G. Strömqvist, V. Pasiskevicius, and C. Canalias, "Control of forward stimulated polariton scattering in periodically-poled KTP crystals," Opt. Express 21, 27277-27283 (2013).
  4. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, "Tunable 3-6 THz polariton laser exceeding 0.1 mW average output power based on crystalline $RbTiOPO_4$," IEEE J. Sel. Top. Quantum Electron. 24, 1-6 (2018).
  5. U. T. Schwarz and M. Maier, "Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements," Phys. Rev. B. 58, 766-775 (1998).
  6. S. S. Sussman, Tunable light scattering from transverse optical modes in lithium niobate; Report No. su-mlr-1851 (1970); Microwave Laboratory, Stanford University: Stanford, CA, USA (1971).
  7. T. Ikari, X. Zhang, H. Minamide, and H. Ito, "THz-wave parametric oscillator with a surface-emitted configuration," Opt. Express 14, 1604-1610 (2006).
  8. J. Kiessling, F. Fuchs, K. Buse, and I. Breunig, "Pumpenhanced optical parametric oscillator generating continuous wave tunable terahertz radiation," Opt. Lett. 36, 4374-4376 (2011).
  9. D. H. Wu and T. Ikari, "Enhancement of the output power of a terahertz parametric oscillator with recycled pump beam," Appl. Phys. Lett. 95, 141105 (2009).
  10. D. N. Nikogosyan, Nonlinear Optical Crystals: a Complete Survey (Springer, New York, USA, 2005).
  11. F. C. Zumsteg, J. D. Bierlein, and T. E. Gier, "$KxRb_{1-x}TiOPO_4$: a new nonlinear optical material," J. Appl. Phys. 47, 4980-4985 (1976).
  12. H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, L. X. Huang, and Z. Q. Chen, "Multi-watt power blue light generation by intracavity sum-frequency-mixing in $KTiOPO_4$ crystal," Opt. Express 16, 2989-2994 (2008).
  13. G. C. Bhar, A. M. Rudra, A. K. Chaudhary, T. Sasaki, and Y. Mori, "Highly efficient difference-frequency generation in KTP," Appl. Phys. B: Laser Opt. 63, 141-144 (1996).
  14. F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, "Continuous-wave, singly resonant, intracavity parametric oscillator," Opt. Lett. 22, 75-77 (1997).
  15. M. H. Wu, Y. C. Chiu, T. D. Wang, G. Zhao, A. Zukauskas, F. Laurell, and Y. C. Huang, "Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate," Opt. Express 24, 25964-25973 (2016).
  16. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, "Terahertz parametric oscillator based on $KTiOPO_4$ crystal," Opt. Lett. 39, 3706-3709 (2014).
  17. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, "Competition effects between stimulated Raman and polariton scattering in intracavity $KTiOPO_4$ crystal," in Proc. OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu3A.3.
  18. G. Kugel, F. Brehat, B. Wyncke, M. Fontana, G. Marnier, C. C. Nedelec, and J. Mangin, "The vibrational spectrum of a $KTiOPO_4$ single crystal studied by Raman and infrared reflectivity spectroscopy," J. Phys. C. 21, 5565-5583 (1988).
  19. J. G. Huang, Z. M. Huang, N. A. Nikolaev, A. A. Mamrashev, V. D. Antsygin, O. I. Potaturkin, A. B. Meshalkin, A. B. Kaplun, G. V. Lanskii, Y. M. Andreev, D. M. Ezhov, and V. A. Svetlichnyi, "Phase matching in RT KTP crystal for down-conversion into the THz range," Laser Phys. Lett. 15, 075401 (2018).
  20. C. Alberdi, J. M. Dineiro, B. Hernandez, and C. Saenz, "General expressions for the refractive indices of absorbing biaxial media as a function of the angle of incidence," J. Opt. Soc. Am. A 32, 228-237 (2015).
  21. A. Mamrashev, N. Nikolaev, V. Antsygin, Y. Andreev, G. Lanskii, and A. Meshalkin, "Optical properties of KTP crystals and their potential for terahertz generation," Crystals 8, 310 (2018).
  22. V. D. Antsygin, A. B. Kaplun, A. A. Mamsharov, N. A. Nikolaev, and O. I. Potaturkin, "Terahertz optical properties of potassium titanyl phosphate crystals," Opt. Express 22, 25436-25443 (2014).


Supported by : National Natural Science Foundation of China, Natural Science Foundation of Henan Province