Optical Phase Properties of Small Numbers of Nanoslits and an Application for Higher-efficiency Fresnel Zone Plates

Kim, Hyuntai;Lee, Seung-Yeol

  • Received : 2019.04.10
  • Accepted : 2019.06.14
  • Published : 2019.08.25


We have studied the behavior of light in the intermediate regime between a single nanoslit and an infinite nanoslit array. We first calculated the optical characteristics of a small number of nanoslits using finite element numerical analysis. The phase variance of the proposed nanoslit model shows a gradual phase shift between a single nanoslit and ideal nanoslit array, which stabilizes before the total array length becomes ${\sim}0.5{\lambda}$. Next, we designed a transmission-enhanced Fresnel zone plate by applying the phase characteristics from the small-number nanoslit model. The virtual-point-source method suggests that the proposed Fresnel zone plate with phase-invariant nanoslits achieves 2.34x higher transmission efficiency than a conventional Fresnel zone plate. Our report describes the intermediate behaviors of a nanoslit array, which could also benefit subwavelength metallic structure research of metasurfaces.


Metamaterial;Effective medium theory;Nanoslit array;Fresnel zone plate


  1. M. L. Brongersma and P. G. Kik, Surface plasmon nanophotonics (Springer, Dordrecht, 2007).
  2. H. Lan and Y. Ding, "Nanoimprint lithography," in Lithography, M. Wang. ed. (InTechOpen, London, UK, 2010), pp. 457-494.
  3. H. Kim, "Plasmonics on optical fiber platforms," in Plasmonics, T. Gric. ed. (IntechOpen, London, UK, 2018), Chapter 10.
  4. F. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, and C.-W. Qiu, "Hybrid bilayer plasmonic metasurface efficiently manipulates visible light," Sci. Adv. 2, e1501168 (2016).
  5. D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," Science 345, 298-302 (2014).
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
  7. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and engineering explorations (John Wiley & Sons, US, 2006).
  8. P. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, Y. A. Zakharenkov, R. K. Dodds, and R. Byren, "All-dielectric subwavelength metasurface focusing lens," Opt. Express 22, 26212-26221 (2014).
  9. S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, and I. Brener, "Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces," Nano Lett. 16, 5426-5432 (2016).
  10. E. Karimi, S. A. Schulz, I. D. Leon, H. Qassim, J. Upham, and R. W. Boyd, "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light: Sci. Appl. 3, e167 (2014).
  11. X. Yi, P. Huang, X. Huang, Z. Xu, C. Zhang, J. Zhao, X. Liu, Y. Ai, and H. Chen, "Operation of polarization order of vector beams with cascaded metasurfaces," Appl. Phys. B 123, 243 (2017).
  12. N. Nookala, J. Xu, O. Wolf, S. March, R. Sarma, S. Bank, J. Klem, I. Brener, and M. Belkin, "Mid-infrared second-harmonic generation in ultra-thin plasmonic metasurfaces without a full-metal backplane," Appl. Phys. B 124, 132 (2018).
  13. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin, planar, Babinet-inverted plasmonic metalenses," Light: Sci. Appl. 2, e72 (2013).
  14. S.-Y. Lee, K. Kim, G.-Y. Lee, and B. Lee, "Polarization-multiplexed plasmonic phase generation with distributed nanoslits," Opt. Express 23, 15598-15607 (2015).
  15. H. Kim, J. Kim, H. An, Y. Lee, G.-y. Lee, J. Na, K. Park, S. Lee, S.-Y. Lee, B. Lee, and Y. Jeong, "Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light," Opt. Express 25, 30290-30303 (2017).
  16. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016).
  17. E. T. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, "A super-oscillatory lens optical microscope for subwavelength imaging," Nat. Mater. 11, 432-435 (2012).
  18. C. Choi, S.-J. Kim, J.-G. Yun, J. Sung, S.-Y. Lee, and B. Lee, "Deflection angle switching with a metasurface based on phase-change nanorods," Chin. Opt. Lett. 16, 050009 (2018).
  19. J. Kim, H. Kim, G.-Y. Lee, J. Kim, B. Lee, and Y. Jeong, "Numerical and experimental study on multi-focal metallic Fresnel zone plates designed by the phase selection rule via virtual point sources," Appl. Sci. 8, 449 (2018).
  20. C. W. Haggans, L. Li, and R. K. Kostuk, "Effective-medium theory of zeroth-order lamellar gratings in conical mountings," J. Opt. Soc. Am. A 10, 2217-2225 (1993).
  21. Y. Jeong, L. A. Vazquez-Zuniga, S. J. Lee, G. Choi, Y. Kwon, and H. Kim, "High-power fiber lasers," in Proc. 2012 17th Opto-Electronics and Communications Conference, (Korea, Jul. 2012), pp. 580-581.
  22. H. Kim and Y. Jeong, "Theoretical and numerical study of cylindrical-vector-mode radiation characteristics in periodic metallic annular slits and their applications," Curr. Opt. Photon. 2, 482-487 (2018).
  23. J. Kim, J. Kim, J. Na, and Y. Jeong, "Numerical study of a novel bi-focal metallic fresnel zone plate having shallow depth-of-field characteristics," Curr. Opt. Photon. 2, 147-152 (2018).
  24. H. Kim, "Metallic triangular pillar grating arrays for high transmission polarizers for air:glass interfaces," Jpn. J. Appl. Phys. 58, 042001 (2019).
  25. N. T. Trung, D. Lee, H. K. Sung, and S. Lim, "Angle-and polarization-insensitive metamaterial absorber based on vertical and horizontal symmetric slotted sectors," Appl Opt. 55, 8301-8307 (2016).
  26. S.-Y. Lee, "Design of a plasmonic switch using ultrathin chalcogenide phase-change material," Curr. Opt. Photon. 1, 239-246 (2017).


Supported by : National Research Foundation (NRF)