Chirality in Non-Hermitian Photonics

Yu, Sunkyu;Piao, Xianji;Park, Namkyoo

  • Received : 2019.04.26
  • Accepted : 2019.05.24
  • Published : 2019.08.25


Chirality is ubiquitous in physics and biology from microscopic to macroscopic phenomena, such as fermionic interactions and DNA duplication. In photonics, chirality has traditionally represented differentiated optical responses for right and left circular polarizations. This definition of optical chirality in the polarization domain includes handedness-dependent phase velocities or optical absorption inside chiral media, which enable polarimetry for measuring the material concentration and circular dichroism spectroscopy for sensing biological or chemical enantiomers. Recently, the emerging field of non-Hermitian photonics, which explores exotic phenomena in gain or loss media, has provided a new viewpoint on chirality in photonics that is not restricted to the traditional polarization domain but is extended to other physical quantities such as the orbital angular momentum, propagation direction, and system parameter space. Here, we introduce recent milestones in chiral light-matter interactions in non-Hermitian photonics and show an enhanced degree of design freedom in photonic devices for spin and orbital angular momenta, directionality, and asymmetric modal conversion.


Chirality;Non-Hermitian photonics;Parity-time symmetry;Exceptional point


  1. M. K. Gaillard, P. D. Grannis, and F. J. Sciulli, "The standard model of particle physics," Rev. Mod. Phys. 71, S96 (1999).
  2. K. Soai, T. Shibata, H. Morioka, and K. Choji, "Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule," Nature 378, 767-768 (1995).
  3. P. L. Polavarapu, "Optical rotation: recent advances in determining the absolute configuration," Chirality 14, 768-781 (2002).
  4. Y. Tang and A. E. Cohen, "Optical chirality and its interaction with matter," Phys. Rev. Lett. 104, 163901 (2010).
  5. K. Y. Bliokh and F. Nori, "Characterizing optical chirality," Phys. Rev. A 83, 021803(R) (2011).
  6. A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of bi-anisotropic materials: Theory and applications (Gordon and Breach Science, 2001).
  7. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).
  8. Y. Tang and A. E. Cohen, "Enhanced enantioselectivity in excitation of chiral molecules by superchiral light," Science 332, 333-336 (2011).
  9. J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).
  10. X. Piao, S. Yu, J. Hong, and N. Park, "Spectral separation of optical spin based on antisymmetric Fano resonances," Sci. Rep. 5, 16585 (2015).
  11. A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, "Photonic topological insulators," Nat. Mater. 12, 233-239 (2013).
  12. H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, "Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles," Nature 556, 360-365 (2018).
  13. L. Feng, R. El-Ganainy, and L. Ge, "Non-Hermitian photonics based on parity-time symmetry," Nat. Photonics 11, 752-762 (2017).
  14. R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, "Non-Hermitian physics and PT symmetry," Nat. Phys. 14, 11-19 (2018).
  15. M.-A. Miri and A. Alu, "Exceptional points in optics and photonics," Science 363, eaar7709 (2019).
  16. S. Longhi, "Parity-time symmetry meets photonics: A new twist in non-Hermitian optics," Europhys. Lett. 120, 64001 (2018).
  17. R. El-Ganainy, M. Khajavikhan, D. N. Christodoulides, and S. K. Ozdemir, "The dawn of non-Hermitian optics," Commun. Phys. 2, 37 (2019).
  18. A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, "Parity-time synthetic photonic lattices," Nature 488, 167-171 (2012).
  19. L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, "Single-mode laser by parity-time symmetry breaking," Science 346, 972-975 (2014).
  20. H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, "Parity-time-symmetric microring lasers," Science 346, 975-978 (2014).
  21. L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, "Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators," Nat. Photonics 8, 524-529 (2014).
  22. Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, "Optical solitons in PT periodic potentials," Phys. Rev. Lett. 100, 030402 (2008).
  23. C. M. Bender and S. Boettcher, "Real spectra in non-Hermitian Hamiltonians having PT symmetry," Phys. Rev. Lett. 80, 5243 (1998).
  24. C. M. Bender, D. C. Brody, and H. F. Jones, "Complex extension of quantum mechanics," Phys. Rev. Lett. 89, 270401 (2002).
  25. C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, "Observation of parity-time symmetry in optics," Nat. Phys. 6, 192-195 (2010).
  26. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, "Observation of PT-symmetry breaking in complex optical potentials," Phys. Rev. Lett. 103, 093902 (2009).
  27. S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. Makris, M. Segev, M. Rechtsman, and A. Szameit, "Topologically protected bound states in photonic parity-time-symmetric crystals," Nat. Mater. 16, 433-438 (2017).
  28. S. Assawaworrarit, X. Yu, and S. Fan, "Robust wireless power transfer using a nonlinear parity-time-symmetric circuit," Nature 546, 387-390 (2017).
  29. R. Fleury, D. L. Sounas, and A. Alu, "Negative refraction and planar focusing based on parity-time symmetric metasurfaces," Phys. Rev. Lett. 113, 023903 (2014).
  30. W. Heiss and H. Harney, "The chirality of exceptional points," Eur. Phys. J. D 17, 149-151 (2001).
  31. W. D. Heiss, "The physics of exceptional points," J. Phys. A 45, 444016 (2012).
  32. W. D. Heiss, M. Müller, and I. Rotter, "Collectivity, phase transitions, and exceptional points in open quantum systems," Phys. Rev. E 58, 2894 (1998).
  33. W. Heiss, "Repulsion of resonance states and exceptional points," Phys. Rev. E 61, 929-932 (2000).
  34. S. Yu, X. Piao, D. R. Mason, S. In, and N. Park, "Spatiospectral separation of exceptional points in PT-symmetric optical potentials," Phys. Rev. A 86, 031802 (2012).
  35. M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, "Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces," Phys. Rev. Lett. 113, 093901 (2014).
  36. S. Yu, H. S. Park, X. Piao, B. Min, and N. Park, "Low-dimensional optical chirality in complex potentials," Optica 3, 1025-1032 (2016).
  37. M. Kang and Y. D. Chong, "Coherent optical control of polarization with a critical metasurface," Phys. Rev. A 92, 043826 (2015).
  38. M. Kang, J. Chen, and Y. D. Chong, "Chiral exceptional points in metasurfaces," Phys. Rev. A 94, 033834 (2016).
  39. S. Yu, X. Piao, and N. Park, "Acceleration toward polarization singularity inspired by relativistic E $\times$ B drift," Sci. Rep. 6, 37754 (2016).
  40. S. Yu, X. Piao, and N. Park, "Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere," Phys. Rev. A 97, 033805 (2018).
  41. A. Cerjan and S. Fan, "Achieving arbitrary control over pairs of polarization states using complex birefringent metamaterials," Phys. Rev. Lett. 118, 253902 (2017).
  42. B. Baum, M. Lawrence, D. Barton III, J. Dionne, and H. Alaeian, "Active polarization control with a parity-time-symmetric plasmonic resonator," Phys. Rev. B 98, 165418 (2018).
  43. X. Piao, S. Yu, and N. Park, "Design of transverse spinning of light with globally unique handedness," Phys. Rev. Lett. 120, 203901 (2018).
  44. H. Kuratsuji and S. Kakigi, "Maxwell-Schrodinger equation for polarized light and evolution of the Stokes parameters," Phys. Rev. Lett. 80, 1888 (1998).
  45. D. L. Andrews and M. Babiker, The angular momentum of light (Cambridge University Press, Cambridge, UK, 2012).
  46. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science 340, 1545-1548 (2013).
  47. D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, "Controlled generation of higher-order Poincare sphere beams from a laser," Nat. Photonics 10, 327-332 (2016).
  48. R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, and F. Capasso, "Arbitrary spin-to-orbital angular momentum conversion of light," Science 358, 896-901 (2017).
  49. A. Mock, D. Sounas, and A. Alu, "Tunable orbital angular momentum radiation from angular-momentum-biased microcavities," Phys. Rev. Lett. 121, 103901 (2018).
  50. N. C. Zambon, P. St-Jean, M. Milicevic, A. Lemaitre, A. Harouri, L. Le Gratiet, O. Bleu, D. D. Solnyshkov, G. Malpuech, and I. Sagnes, S. Ravets, A. Amo, and J. Bloch, "Optically controlling the emission chirality of microlasers," Nat. Photonics 13, 283-288 (2019).
  51. C. Dembowski, B. Dietz, H. D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, "Observation of a chiral state in a microwave cavity," Phys. Rev. Lett. 90, 034101 (2003).
  52. P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, "Orbital angular momentum microlaser," Science 353, 464-467 (2016).
  53. W. E. Hayenga, J. Ren, M. Parto, F. Wu, M. P. Hokmabadi, C. Wolff, R. El-Ganainy, N. A. Mortensen, D. N. Christodoulides, and M. Khajavikhan, "Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points," arXiv preprint arXiv:1903.10108 (2019).
  54. J. M. Lee, S. Factor, Z. Lin, I. Vitebskiy, F. M. Ellis, and T. Kottos, "Reconfigurable directional lasing modes in cavities with generalized PT symmetry," Phys. Rev. Lett. 112, 253902 (2014).
  55. F.-J. Shu, C.-L. Zou, X.-B. Zou, and L. Yang, "Chiral symmetry breaking in a microring optical cavity by engineered dissipation," Phys. Rev. A 94, 013848 (2016).
  56. B. Peng, S. K. Ozdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, "Chiral modes and directional lasing at exceptional points," Proc. Natl. Acad. Sci. 113, 6845-6850 (2016).
  57. W. R. Sweeney, C. W. Hsu, S. Rotter, and A. D. Stone, "Perfectly absorbing exceptional points and chiral absorbers," Phys. Rev. Lett. 122, 093901 (2019).
  58. D. A. B. Miller, "Are optical transistors the logical next step?," Nat. Photonics 4, 3-5 (2010).
  59. D. L. Sounas and A. Alu, "Non-reciprocal photonics based on time modulation," Nat. Photonics 11, 774-783 (2017).
  60. S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popovic, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, "Comment on "Nonreciprocal light propagation in a silicon photonic circuit"," Science 335, 38 (2012).
  61. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, "What is - and what is not - an optical isolator," Nat. Photonics 7, 579-582 (2013).
  62. Y. Chong, L. Ge, H. Cao, and A. D. Stone, "Coherent perfect absorbers: time-reversed lasers," Phys. Rev. Lett. 105, 053901 (2010).
  63. Y. D. Chong, L. Ge, and A. D. Stone, "PT-symmetry breaking and laser-absorber modes in optical scattering systems," Phys. Rev. Lett. 106, 093902 (2011).
  64. S. Yu, X. Piao, J. Hong, and N. Park, "Progress toward high-Q perfect absorption: A Fano antilaser," Phys. Rev. A 92, 011802 (2015).
  65. J. Wiersig, "Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection," Phys. Rev. Lett. 112, 203901 (2014).
  66. J. Wiersig, "Sensors operating at exceptional points: general theory," Phys. Rev. A 93, 033809 (2016).
  67. W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, "Exceptional points enhance sensing in an optical microcavity," Nature 548, 192-196 (2017).
  68. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, "On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator," Nat. Photonics 4, 46-49 (2010).
  69. L. Ge and A. D. Stone, "Parity-time symmetry breaking beyond one dimension: the role of degeneracy," Phys. Rev. X 4, 031011 (2014).
  70. S. Yu, X. Piao, J. Hong, and N. Park, "Metadisorder for designer light in random systems," Sci. Adv. 2, e1501851 (2016).
  71. S. Yu, X. Piao, and N. Park, "Target decoupling in coupled systems resistant to random perturbation," Sci. Rep. 7, 2139 (2017).
  72. S. Yu, X. Piao, and N. Park, "Bohmian photonics for independent control of the phase and amplitude of waves," Phys. Rev. Lett. 120, 193902 (2018).
  73. K. G. Makris, Z. H. Musslimani, D. N. Christodoulides, and S. Rotter, "Constant-intensity waves and their modulation instability in non-Hermitian potentials," Nat. Commun. 6, 7257 (2015).
  74. E. Rivet, A. Brandstötter, K. G. Makris, H. Lissek, S. Rotter, and R. Fleury, "Constant-pressure sound waves in non-Hermitian disordered media," Nat. Phys. 14, 942-947 (2018).
  75. K. G. Makris, A. Brandstötter, P. Ambichl, Z. H. Musslimani, and S. Rotter, "Wave propagation through disordered media without backscattering and intensity variations," Light Sci. Appl. 6, e17035 (2017).
  76. S. Pancharatnam, "Generalized theory of interference and its applications. Part. II. Partially coherent pencils," Proc. Indiana Acad. Sci. 44, 398-417 (1956).
  77. M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. Lond. A 392, 45-57 (1984).
  78. Y. Aharonov and J. Anandan, "Phase change during a cyclic quantum evolution," Phys. Rev. Lett. 58, 1593 (1987).
  79. W. D. Heiss, "Phases of wave functions and level repulsion," Eur. Phys. J. D 7, 1-4 (1999).
  80. C. Dembowski, B. Dietz, H.-D. Graf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, "Encircling an exceptional point," Phys. Rev. E 69, 056216 (2004).
  81. R. Lefebvre, O. Atabek, M. Sindelka, and N. Moiseyev, "Resonance coalescence in molecular photodissociation," Phys. Rev. Lett. 103, 123003 (2009).
  82. C. Dembowski, H. D. Graf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, "Experimental observation of the topological structure of exceptional points," Phys. Rev. Lett. 86, 787-790 (2001).
  83. J. Doppler, A. A. Mailybaev, J. Bohm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, "Dynamically encircling an exceptional point for asymmetric mode switching," Nature 537, 76-79 (2016).
  84. X.-L. Zhang, S. Wang, B. Hou, and C. T. Chan, "Dynamically encircling exceptional points: in situ control of encircling loops and the role of the starting point," Phys. Rev. X 8, 021066 (2018).
  85. A. U. Hassan, B. Zhen, M. Soljacic, M. Khajavikhan, and D. N. Christodoulides, "Dynamically encircling exceptional points: Exact evolution and polarization state conversion," Phys. Rev. Lett. 118, 093002 (2017).
  86. J. W. Yoon, Y. Choi, C. Hahn, G. Kim, S. H. Song, K.-Y. Yang, J. Y. Lee, Y. Kim, C. S. Lee, J. K. Shin, H.-S. Lee, and P. Berini, "Time-asymmetric loop around an exceptional point over the full optical communications band," Nature 562, 86-90 (2018).
  87. H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, "Topological energy transfer in an optomechanical system with exceptional points," Nature 537, 80-83 (2016).
  88. X.-L. Zhang, T. Jiang, H.-B. Sun, and C. T. Chan, "Dynamically encircling an exceptional point in anti-PT-symmetric systems: asymmetric mode switching for symmetry-broken states," arXiv preprint arXiv:1806.07649 (2018).
  89. T. E. Lee, "Anomalous edge state in a non-Hermitian lattice," Phys. Rev. Lett. 116, 133903 (2016).
  90. Q. Zhong, M. Khajavikhan, D. N. Christodoulides, and R. El-Ganainy, "Winding around non-Hermitian singularities," Nat. Commun. 9, 4808 (2018).
  91. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, "Parity-time synthetic photonic lattices," Nature 488, 167-171 (2012).
  92. E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, "Photonic topological insulator in synthetic dimensions," Nature 567, 356-360 (2019).
  93. K. Y. Bliokh, D. Smirnova, and F. Nori, "Quantum spin Hall effect of light," Science 348, 1448-1451 (2015).
  94. D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, "Edge modes, degeneracies, and topological numbers in non-Hermitian systems," Phys. Rev. Lett. 118, 040401 (2017).
  95. S. Lieu, "Topological phases in the non-Hermitian Su-Schrieffer-Heeger model," Phys. Rev. B 97, 045106 (2018).
  96. D. S. Wiersma, "Disordered photonics," Nat. Photonics 7, 188-196 (2013).
  97. H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, "Observation of Anderson localization in disordered nanophotonic structures," Science 356, 953-956 (2017).
  98. S. Yu, X. Piao, and N. Park, "Disordered potential landscapes for anomalous delocalization and superdiffusion of light," ACS Photonics 5, 1499-1505 (2018).
  99. M.-A. Miri, M. Heinrich, R. El-Ganainy, and D. N. Christodoulides, "Supersymmetric optical structures," Phys. Rev. Lett. 110, 233902 (2013).
  100. M. P. Hokmabadi, N. S. Nye, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, "Supersymmetric laser arrays," Science 363, 623-626 (2019).
  101. M. Heinrich, M. A. Miri, S. Stutzer, R. El-Ganainy, S. Nolte, A. Szameit, and D. N. Christodoulides, "Supersymmetric mode converters," Nat. Commun. 5, 3698 (2014).
  102. S. Yu, X. Piao, J. Hong, and N. Park, "Bloch-like waves in random-walk potentials based on supersymmetry," Nat. Commun. 6, 8269 (2015).
  103. S. Yu, X. Piao, and N. Park, "Controlling random waves with digital building blocks based on supersymmetry," Phys. Rev. Appl. 8, 054010 (2017).


Supported by : National Research Foundation of Korea (NRF)