DOI QR코드

DOI QR Code

Design Strategies for Adsorbents with Optimal Propylene/propane Adsorptive Separation Performances

최적의 프로필렌/프로판 흡착 분리 성능을 가지는 흡착제의 개발 전략들

  • Kim, Tea-Hoon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Seung-Joon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Seo-Yul (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Ah-Reum (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Bae, Youn-Sang (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김태훈 (연세대학교 화공생명공학과) ;
  • 이승준 (연세대학교 화공생명공학과) ;
  • 김서율 (연세대학교 화공생명공학과) ;
  • 김아름 (연세대학교 화공생명공학과) ;
  • 배윤상 (연세대학교 화공생명공학과)
  • Received : 2019.02.28
  • Accepted : 2019.04.09
  • Published : 2019.08.01

Abstract

An efficient propylene/propane separation technology is needed to obtain high-purity propylene, which is a raw material for polypropylene synthesis. Since conventional cryogenic distillation is an energy-intensive process due to the similar physicochemical properties of propylene and propane, adsorptive separation has gained considerable interest. In this study, we have computationally investigated the changes in adsorption separation performances by arbitrarily controlling the adsorption strength of open metal sites in two different types of metal-organic frameworks (MOFs). Through the evaluation of adsorptive separation performances in terms of working capacity, selectivity, and Adsorption Figure of Merit (AFM), we have suggested proper density and strength of adsorption sites as well as appropriate temperature condition to obtain optimal propylene/propane adsorptive separation performances.

Keywords

Olefin/paraffin separation;Propylene/propane separation;Grand canonical Monte Carlo (GCMC);Metal-organic framework (MOF);Adsorption

HHGHHL_2019_v57n4_484_f0001.png 이미지

Fig. 1. Experimental and simulated (a) C3H8 and (b) C3H6 adsorption isotherms in Co-MOF-74 at 298 K.

HHGHHL_2019_v57n4_484_f0002.png 이미지

Fig. 2. Simulated single component C3H8 and C3H6 adsorption isotherms at three different temperatures: (a) C3H8 in Co-MOF-74; (b) C3H6 in Co-MOF-74; (c) C3H8 in HKUST-1; (d) C3H6 in HKUST-1.

HHGHHL_2019_v57n4_484_f0003.png 이미지

Fig. 3. Simulated single component C3H8 and C3H6 adsorption isotherms for Co-MOF-74 with varied L-J ε parameters: (a) C3H8 at 298 K; (b) C3H6 at 298 K; (c) C3H8 at 323 K; (d) C3H6 at 323 K; (e) C3H8 at 348 K; (b) C3H6 at 348 K.

HHGHHL_2019_v57n4_484_f0004.png 이미지

Fig. 4. Simulated single component C3H8 and C3H6 adsorption isotherms for HKUST-1 with varied L-J ε parameters: (a) C3H8 at 298 K; (b) C3H6 at 298 K; (c) C3H8 at 323 K; (d) C3H6 at 323 K; (e) C3H8 at 348 K; (b) C3H6 at 348 K.

HHGHHL_2019_v57n4_484_f0005.png 이미지

Fig. 5. Relationships between multiplied ε parameters and C3H6 working capacity (5 bar-0.3 bar) or C3H6/C3H8 selectivity (5 bar) for (a) Co-MOF-74 and (b) HKUST-1 at three different temperatures.

HHGHHL_2019_v57n4_484_f0006.png 이미지

Fig. 6. Relationships between multiplied ε parameters and adsorption figure of merit (AFM) for (a) Co-MOF-74 and (b) HKUST-1 at three different temperatures.

Table 1. Surface area, pore volume and crystal density of Co-MOF-74 and HKUST-1 [10]

HHGHHL_2019_v57n4_484_t0001.png 이미지

Table 2. Working capacities and selectivities of pristine Co-MOF-74 and HKUST-1 materials at three different temperatures

HHGHHL_2019_v57n4_484_t0002.png 이미지

Acknowledgement

Grant : Next Generation Carbon Upcycling Project

Supported by : National Research Foundation (NRF)

References

  1. Yang, R. T., Adsorbents: fundamentals and applications, John Wiley & Sons(2003).
  2. Jarvelin, H. and Fair, J. R., "Adsorptive Separation of Propylene Propane Mixtures," Ind. Eng. Chem. Res., 32(10), 2201-2207(1993). https://doi.org/10.1021/ie00022a001
  3. Grande, C.A., Gascon, J., Kapteijn, F. and Rodrigues, A. E., "Propane/ propylene Separation with Li-exchanged Zeolite 13X," Chem. Eng. J., 160(1), 207-214(2010). https://doi.org/10.1016/j.cej.2010.03.044
  4. Ferey, G., "Hybrid Porous Solids: Past, Present, Future," Chem. Soc. Rev., 37(1), 191-214(2008). https://doi.org/10.1039/B618320B
  5. Furukawa, H., Cordova, K. E., O'Keeffe, M. and Yaghi, O. M., "The Chemistry and Applications of Metal-organic Frameworks," Science, 341(6149), 1230444(2013). https://doi.org/10.1126/science.1230444
  6. Khan, N. A. and Jhung, S. H., "Adsorptive Removal and Separation of Chemicals with Metal-organic Frameworks: Contribution of ${\pi}$-complexation," J. Hazard. Mater., 325, 198-213(2017). https://doi.org/10.1016/j.jhazmat.2016.11.070
  7. Lamia, N., Jorge, M., Granato, M. A., Paz, F. A. A., Chevreau, H. and Rodrigues, A. E., "Adsorption of Propane, Propylene and Isobutane on a Metal-organic Framework: Molecular Simulation and Experiment," Chem. Eng. Sci., 64(14), 3246-3259(2009). https://doi.org/10.1016/j.ces.2009.04.010
  8. Wuttke, S., Bazin, P., Vimont, A., Serre, C., Seo, Y. K., Hwang, Y. K., Chang, J. S., Ferey, G. and Daturi, M., "Discovering the Active Sites for C3 Separation in MIL-100(Fe) by Using Operando IR Spectroscopy," Chem.-Eur. J., 18(38), 11959-11967(2012). https://doi.org/10.1002/chem.201201006
  9. Bae, Y. S., Lee, C. Y., Kim, K. C., Farha, O. K., Nickias, P., Hupp, J. T., Nguyen, S. T. and Snurr, R. Q., "High Propene/propane Selectivity in Isostructural Metal-organic Frameworks with High Densities of Open Metal Sites," Angew. Chem.-Int. Edit., 51(8), 1857-1860(2012). https://doi.org/10.1002/anie.201107534
  10. Lee, S. J. and Bae, Y. S., "Can Metal-Organic Frameworks Attain New DOE Targets for On-Board Methane Storage by Increasing Methane Heat of Adsorption?," J. Phys. Chem. C, 118(34), 19833- 19841(2014). https://doi.org/10.1021/jp504983e
  11. Bae, Y. S. and Snurr, R. Q., "Optimal Isosteric Heat of Adsorption for Hydrogen Storage and Delivery Using Metal-organic Frameworks," Microporous Mesoporous Mat., 132(1-2), 300-303(2010). https://doi.org/10.1016/j.micromeso.2010.02.023
  12. Lee, H., Choi, J. H., Yeo, Y. K., Song, H. K. and Na, B. K., "Effect of Evacuation and Rinse Conditions on Performance in PSA Process for $CO_2$ Recovery," Korean Chem. Eng. Res., 36(6), 809-816(2000).
  13. Sumer, Z. and Keskin, S., "Ranking of MOF Adsorbents for $CO_2$ Separations: A Molecular Simulation Study," Ind. Eng. Chem. Res., 55(39), 10404-10419(2016). https://doi.org/10.1021/acs.iecr.6b02585
  14. Dubbeldam, D., Calero, S., Ellis, D. E. and Snurr, R. Q., "RASPA: Molecular Simulation Software for Adsorption and Diffusion in Flexible Nanoporous Materials," Mol. Simul., 42(2), 81-101(2016). https://doi.org/10.1080/08927022.2015.1010082
  15. Mayo, S. L., Olafson, B. D. and Goddard, W. A., "Dreiding - A Generic Force-field for Molecular Simulations," J. Phys. Chem., 94(26), 8897-8909(1990). https://doi.org/10.1021/j100389a010
  16. Dubbeldam, D., Calero, S., Vlugt, T. J. H., Krishna, R., Maesen, T. L. M. and Smit, B., "United Atom Force Field for Alkanes in Nanoporous Materials," J. Phys. Chem. B, 108(33), 12301-12313 (2004). https://doi.org/10.1021/jp0376727
  17. Martin, M. G. and Siepmann, J. I., "Transferable Potentials for Phase Equilibria. 1. United-atom Description of n-alkanes," J. Phys. Chem. B, 102(14), 2569-2577(1998). https://doi.org/10.1021/jp972543+
  18. Da Silva, F. A. and Rodrigues, A. E., "Propylene/propane Separation by Vacuum Swing Adsorption Using 13X Zeolite," AlChE J., 47(2), 341-357(2001). https://doi.org/10.1002/aic.690470212
  19. Yazaydin, A. O., Snurr, R. Q., Park, T. H., Koh, K., Liu, J., LeVan, M. D., Benin, A. I., Jakubczak, P., Lanuza, M., Galloway, D.B., Low, J. J. and Willis, R. R., "Screening of Metal-Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach," J. Am. Chem. Soc., 131(51), 18198-18199(2009). https://doi.org/10.1021/ja9057234