DOI QR코드

DOI QR Code

Deficiency or activation of peroxisome proliferator-activated receptor α reduces the tissue concentrations of endogenously synthesized docosahexaenoic acid in C57BL/6J mice

  • Hsiao, Wen-Ting (Department of Nutrition, China Medical University) ;
  • Su, Hui-Min (Graduate Institute of Physiology, National Taiwan University) ;
  • Su, Kuan-Pin (Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital) ;
  • Chen, Szu-Han (Department of Nutrition, China Medical University) ;
  • Wu, Hai-Ping (Department of Nutrition, China Medical University) ;
  • You, Yi-Ling (Department of Nutrition, China Medical University) ;
  • Fu, Ru-Huei (Graduate Institute of Immunology, China Medical University) ;
  • Chao, Pei-Min (Department of Nutrition, China Medical University)
  • Received : 2019.01.15
  • Accepted : 2019.04.02
  • Published : 2019.08.01

Abstract

BACKGROUND/OBJECTIVES: Docosahexaenoic acid (DHA), an n-3 long chain polyunsaturated fatty acid (LCPUFA), is acquired by dietary intake or the in vivo conversion of ${\alpha}$-linolenic acid. Many enzymes participating in LCPUFA synthesis are regulated by peroxisome proliferator-activated receptor alpha ($PPAR{\alpha}$). Therefore, it was hypothesized that the tissue accretion of endogenously synthesized DHA could be modified by $PPAR{\alpha}$. MATERIALS/METHODS: The tissue DHA concentrations and mRNA levels of genes participating in DHA biosynthesis were compared among $PPAR{\alpha}$ homozygous (KO), heterozygous (HZ), and wild type (WT) mice (Exp I), and between WT mice treated with clofibrate ($PPAR{\alpha}$ agonist) or those not treated (Exp II). In ExpII, the expression levels of the proteins associated with DHA function in the brain cortex and retina were also measured. An n3-PUFA depleted/replenished regimen was applied to mitigate the confounding effects of maternal DHA. RESULTS: $PPAR{\alpha}$ ablation reduced the hepatic Acox, Fads1, and Fads2 mRNA levels, as well as the DHA concentration in the liver, but not in the brain cortex. In contrast, $PPAR{\alpha}$ activation increased hepatic Acox, Fads1, Fads2, and Elovl5 mRNA levels, but reduced the DHA concentrations in the liver, retina, and phospholipid of brain cortex, and decreased mRNA and protein levels of the brain-derived neurotrophic factor in brain cortex. CONCLUSIONS: LCPUFA enzyme expression was altered by $PPAR{\alpha}$. Either $PPAR{\alpha}$ deficiency or activation-decreased tissue DHA concentration is a stimulus for further studies to determine the functional significance.

Keywords

PPAR alpha;clofibrate;docosahexaenoic acids;brain-derived neurotrophic factor;fatty acid desaturases

Acknowledgement

Supported by : Ministry of Science and Technology, China Medical University

References

  1. Molloy C, Doyle LW, Makrides M, Anderson PJ. Docosahexaenoic acid and visual functioning in preterm infants: a review. Neuropsychol Rev 2012;22:425-37. https://doi.org/10.1007/s11065-012-9216-z
  2. Echeverria F, Valenzuela R, Catalina Hernandez-Rodas M, Valenzuela A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: new dietary sources. Prostaglandins Leukot Essent Fatty Acids 2017;124:1-10. https://doi.org/10.1016/j.plefa.2017.08.001
  3. Salem N Jr, Litman B, Kim HY, Gawrisch K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001;36:945-59. https://doi.org/10.1007/s11745-001-0805-6
  4. Iizuka-Hishikawa Y, Hishikawa D, Sasaki J, Takubo K, Goto M, Nagata K, Nakanishi H, Shindou H, Okamura T, Ito C, Toshimori K, Sasaki T, Shimizu T. Lysophosphatidic acid acyltransferase 3 tunes the membrane status of germ cells by incorporating docosahexaenoic acid during spermatogenesis. J Biol Chem 2017;292:12065-76. https://doi.org/10.1074/jbc.M117.791277
  5. Harris WS, Bulchandani D. Why do omega-3 fatty acids lower serum triglycerides? Curr Opin Lipidol 2006;17:387-93. https://doi.org/10.1097/01.mol.0000236363.63840.16
  6. Geleijnse JM, Giltay EJ, Grobbee DE, Donders AR, Kok FJ. Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials. J Hypertens 2002;20:1493-9. https://doi.org/10.1097/00004872-200208000-00010
  7. Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid (DHA). Pharmacol Res 1999;40:211-25. https://doi.org/10.1006/phrs.1999.0495
  8. Lin PY, Chiu CC, Huang SY, Su KP. A meta-analytic review of polyunsaturated fatty acid compositions in dementia. J Clin Psychiatry 2012;73:1245-54. https://doi.org/10.4088/JCP.11r07546
  9. McNamara RK, Hahn CG, Jandacek R, Rider T, Tso P, Stanford KE, Richtand NM. Selective deficits in the omega-3 fatty acid docosahexaenoic acid in the postmortem orbitofrontal cortex of patients with major depressive disorder. Biol Psychiatry 2007;62:17-24. https://doi.org/10.1016/j.biopsych.2006.08.026
  10. McNamara RK, Jandacek R, Rider T, Tso P, Stanford KE, Hahn CG, Richtand NM. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder. Psychiatry Res 2008;160:285-99. https://doi.org/10.1016/j.psychres.2007.08.021
  11. Chang JP, Su KP, Mondelli V, Pariante CM. Omega-3 polyunsaturated fatty acids in youths with attention deficit hyperactivity disorder: a systematic review and meta-analysis of clinical trials and biological studies. Neuropsychopharmacology 2018;43:534-45. https://doi.org/10.1038/npp.2017.160
  12. Park HG, Park WJ, Kothapalli KS, Brenna JT. The fatty acid desaturase 2 (FADS2) gene product catalyzes ${\Delta}4$ desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells. FASEB J 2015;29:3911-9. https://doi.org/10.1096/fj.15-271783
  13. Pauter AM, Olsson P, Asadi A, Herslof B, Csikasz RI, Zadravec D, Jacobsson A. Elovl2 ablation demonstrates that systemic DHA is endogenously produced and is essential for lipid homeostasis in mice. J Lipid Res 2014;55:718-28. https://doi.org/10.1194/jlr.M046151
  14. Voss A, Reinhart M, Sankarappa S, Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem 1991;266:19995-20000.
  15. Moore SA, Hurt E, Yoder E, Sprecher H, Spector AA. Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J Lipid Res 1995;36:2433-43.
  16. Ferdinandusse S, Denis S, Mooijer PA, Zhang Z, Reddy JK, Spector AA, Wanders RJ. Identification of the peroxisomal ${\beta}$-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. J Lipid Res 2001;42:1987-95.
  17. Wang Y, Botolin D, Christian B, Busik J, Xu J, Jump DB. Tissuespecific, nutritional, and developmental regulation of rat fatty acid elongases. J Lipid Res 2005;46:706-15. https://doi.org/10.1194/jlr.M400335-JLR200
  18. Tang C, Cho HP, Nakamura MT, Clarke SD. Regulation of human ${\Delta}$-6 desaturase gene transcription: identification of a functional direct repeat-1 element. J Lipid Res 2003;44:686-95. https://doi.org/10.1194/jlr.M200195-JLR200
  19. Matsuzaka T, Shimano H, Yahagi N, Amemiya-Kudo M, Yoshikawa T, Hasty AH, Tamura Y, Osuga J, Okazaki H, Iizuka Y, Takahashi A, Sone H, Gotoda T, Ishibashi S, Yamada N. Dual regulation of mouse Delta(5)- and Delta(6)-desaturase gene expression by SREBP-1 and PPARalpha. J Lipid Res 2002;43:107-14.
  20. Qi C, Zhu Y, Reddy JK. Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys 2000;32:187-204. https://doi.org/10.1385/CBB:32:1-3:187
  21. Oosterveer MH, Grefhorst A, van Dijk TH, Havinga R, Staels B, Kuipers F, Groen AK, Reijngoud DJ. Fenofibrate simultaneously induces hepatic fatty acid oxidation, synthesis, and elongation in mice. J Biol Chem 2009;284:34036-44. https://doi.org/10.1074/jbc.M109.051052
  22. Tian Q, Grzemski FA, Panagiotopoulos S, Ahokas JT. Peroxisome proliferator-activated receptor alpha agonist, clofibrate, has profound influence on myocardial fatty acid composition. Chem Biol Interact 2006;160:241-51. https://doi.org/10.1016/j.cbi.2006.02.003
  23. Madsen L, Froyland L, Dyroy E, Helland K, Berge RK. Docosahexaenoic and eicosapentaenoic acids are differently metabolized in rat liver during mitochondria and peroxisome proliferation. J Lipid Res 1998;39:583-93.
  24. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 1993;123:1939-51. https://doi.org/10.1093/jn/123.11.1939
  25. Blank C, Neumann MA, Makrides M, Gibson RA. Optimizing DHA levels in piglets by lowering the linoleic acid to alpha-linolenic acid ratio. J Lipid Res 2002;43:1537-43. https://doi.org/10.1194/jlr.M200152-JLR200
  26. Chang YY, Su HM, Chen SH, Hsieh WT, Chyuan JH, Chao PM. Roles of peroxisome proliferator-activated receptor ${\alpha}$ in bitter melon seed oil-corrected lipid disorders and conversion of ${\alpha}$-eleostearic acid into rumenic acid in C57BL/6J mice. Nutrients 2016;8:E805. https://doi.org/10.3390/nu8120805
  27. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh EL, Silver DL. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 2014;509:503-6. https://doi.org/10.1038/nature13241
  28. Wong BH, Chan JP, Cazenave-Gassiot A, Poh RW, Foo JC, Galam DL, Ghosh S, Nguyen LN, Barathi VA, Yeo SW, Luu CD, Wenk MR, Silver DL. Mfsd2a is a transporter for the essential ${\omega}$-3 fatty acid docosahexaenoic acid (DHA) in eye and is important for photoreceptor cell development. J Biol Chem 2016;291:10501-14. https://doi.org/10.1074/jbc.M116.721340
  29. Balogun KA, Cheema SK. The expression of neurotrophins is differentially regulated by ${\omega}$-3 polyunsaturated fatty acids at weaning and postweaning in C57BL/6 mice cerebral cortex. Neurochem Int 2014;66:33-42. https://doi.org/10.1016/j.neuint.2014.01.007
  30. Squinto SP, Stitt TN, Aldrich TH, Davis S, Blanco SM, Radziejewski C, Glass DJ, Masiakowski P, Furth ME, Valenzuela DM, Distefano PS, Yancopoulos GD. trkB encodes a functional receptor for brainderived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 1991;65:885-93. https://doi.org/10.1016/0092-8674(91)90395-F
  31. Garelli A, Rotstein NP, Politi LE. Docosahexaenoic acid promotes photoreceptor differentiation without altering Crx expression. Invest Ophthalmol Vis Sci 2006;47:3017-27. https://doi.org/10.1167/iovs.05-1659
  32. Williams CM, Burdge G. Long-chain n-3 PUFA: plant v. marine sources. Proc Nutr Soc 2006;65:42-50. https://doi.org/10.1079/PNS2005473
  33. Miller CW, Ntambi JM. Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc Natl Acad Sci U S A 1996;93:9443-8. https://doi.org/10.1073/pnas.93.18.9443
  34. Kitson AP, Stroud CK, Stark KD. Elevated production of docosahexaenoic acid in females: potential molecular mechanisms. Lipids 2010;45:209-24. https://doi.org/10.1007/s11745-010-3391-6
  35. Pawlosky R, Hibbeln J, Lin Y, Salem N. n-3 fatty acid metabolism in women. Br J Nutr 2003;90:993-4. https://doi.org/10.1079/BJN2003985
  36. Querques G, Forte R, Souied EH. Retina and omega-3. J Nutr Metab 2011;2011:748361.
  37. Hill RE, Favor J, Hogan BL, Ton CC, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 1991;354:522-5. https://doi.org/10.1038/354522a0
  38. Furukawa T, Morrow EM, Li T, Davis FC, Cepko CL. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat Genet 1999;23:466-70. https://doi.org/10.1038/70591
  39. SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 2005;24:87-138. https://doi.org/10.1016/j.preteyeres.2004.06.002
  40. Grossfield A, Feller SE, Pitman MC. A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids. Proc Natl Acad Sci U S A 2006;103:4888-93. https://doi.org/10.1073/pnas.0508352103
  41. Miller DS, Nobmann SN, Gutmann H, Toeroek M, Drewe J, Fricker G. Xenobiotic transport across isolated brain microvessels studied by confocal microscopy. Mol Pharmacol 2000;58:1357-67. https://doi.org/10.1124/mol.58.6.1357
  42. Maes M, Delanghe J, Meltzer HY, Scharpe S, D'Hondt P, Cosyns P. Lower degree of esterification of serum cholesterol in depression: relevance for depression and suicide research. Acta Psychiatr Scand 1994;90:252-8. https://doi.org/10.1111/j.1600-0447.1994.tb01589.x
  43. Brunner J, Parhofer KG, Schwandt P, Bronisch T. Cholesterol, essential fatty acids, and suicide. Pharmacopsychiatry 2002;35:1-5. https://doi.org/10.1055/s-2002-19834
  44. Kunugi H, Takei N, Aoki H, Nanko S. Low serum cholesterol in suicide attempters. Biol Psychiatry 1997;41:196-200. https://doi.org/10.1016/S0006-3223(95)00672-9
  45. Papassotiropoulos A, Hawellek B, Frahnert C, Rao GS, Rao ML. The risk of acute suicidality in psychiatric inpatients increases with low plasma cholesterol. Pharmacopsychiatry 1999;32:1-4.
  46. Muldoon MF, Manuck SB, Matthews KA. Lowering cholesterol concentrations and mortality: a quantitative review of primary prevention trials. BMJ 1990;301:309-14. https://doi.org/10.1136/bmj.301.6747.309
  47. Su KP, Tsai SY, Huang SY. Cholesterol, depression and suicide. Br J Psychiatry 2000;176:399.
  48. Roy A, Jana M, Corbett GT, Ramaswamy S, Kordower JH, Gonzalez FJ, Pahan K. Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferatoractivated receptor ${\alpha}$. Cell Reports 2013;4:724-37. https://doi.org/10.1016/j.celrep.2013.07.028
  49. Xu H, You Z, Wu Z, Zhou L, Shen J, Gu Z. WY14643 attenuates the scopolamine-induced memory impairments in mice. Neurochem Res 2016;41:2868-79. https://doi.org/10.1007/s11064-016-2002-1
  50. Jiang B, Wang YJ, Wang H, Song L, Huang C, Zhu Q, Wu F, Zhang W. Antidepressant-like effects of fenofibrate in mice via the hippocampal brain-derived neurotrophic factor signalling pathway. Br J Pharmacol 2017;174:177-94. https://doi.org/10.1111/bph.13668
  51. Ren H, Aleksunes LM, Wood C, Vallanat B, George MH, Klaassen CD, Corton JC. Characterization of peroxisome proliferator-activated receptor alpha--independent effects of PPARalpha activators in the rodent liver: di-(2-ethylhexyl) phthalate also activates the constitutiveactivated receptor. Toxicol Sci 2010;113:45-59. https://doi.org/10.1093/toxsci/kfp251