DOI QR코드

DOI QR Code

A study on Anti-diabetic Mechanism of Ethanol Extract of Dendrobii Herba

석곡 에탄올 추출물의 항당뇨 약리기전에 관한 연구

  • Park, Myung-ji (Wonkwang University Graduate School of Traditional Chinese Medicine) ;
  • Lee, Yeoung-Ju (Department of Medicinal Crops, Dongbang Culture University)
  • 박명지 (원광대학교 한의학전문대학원) ;
  • 이영주 (동방문화대학원 약용작물학부)
  • Received : 2019.05.28
  • Accepted : 2019.07.20
  • Published : 2019.07.28

Abstract

Antidolary active and anti-sugar mechanisms of the ova family (石斛; Dendrobii herba) ethanol extract (EED) were investigated. The EED was administered orally four times a day in a diabetic mouse induced by strepto Joe Toshin to reveal and reveal its pharmacological miracle through experimental studies that reduce the liver function of empty blood sugar, glythamic oxal acetate levels, insulin levels and glutamic acid trans aminaase and glutamic acid pyruvic acid trans amine. EED increased insulin secretion by glucose in RINm5F beta cells as well as intraperitoneal glucose intakes in L6 muscle cells. Thus, EED has shown great promise in displaying anti-diabetes activity not only by increasing insulin secretion but also by increasing intakes per cell, and hopes that future research on pharmacological mechanisms for quartz (Dendrobii herba) ethanol extract will be more active and contribute greatly to the treatment of diabetes.

Keywords

Dendrobii herba;anti-diabetic effect;a-glucosidase activity;glucose uptake;fasting blood glucose

DJTJBT_2019_v17n7_275_f0001.png 이미지

Fig. 1. Effect of EED at different concentrations( 50-400 μg/ml ) against α-glucosidase.

DJTJBT_2019_v17n7_275_f0002.png 이미지

Fig. 2. Effect of EED on blood glucose levels during oral sucrose tolerance test in normoglycemic mice.

DJTJBT_2019_v17n7_275_f0003.png 이미지

Fig. 3. Effect of EED on blood glucose levels during oral glucose tolerance test in normoglycemic mice.

DJTJBT_2019_v17n7_275_f0004.png 이미지

Fig. 4. Effect of EED on insulin secretion in RINm5F cells.

DJTJBT_2019_v17n7_275_f0005.png 이미지

Fig. 5. Effect of EED on glucose uptake in L6 myotube cells.

DJTJBT_2019_v17n7_275_f0006.png 이미지

Fig. 6. Effect of EED on fasting blood glucose levels in STZ-diabetic mice.

DJTJBT_2019_v17n7_275_f0007.png 이미지

Fig. 7. Effect of EED on glycosylated hemoglobin(HbA1c) levels in STZ-diabetic mice.

DJTJBT_2019_v17n7_275_f0008.png 이미지

Fig. 8. Effect of EED on serum insulin levels in STZ-diabetic mice.

DJTJBT_2019_v17n7_275_f0009.png 이미지

Fig. 9. Effect of EED on GOT levels in STZ-diabetic mice.

DJTJBT_2019_v17n7_275_f0010.png 이미지

Fig. 10. Effect of EED on GPT levels in STZ-diabetic mice.

References

  1. Herbology department of all-korea oriental medicine colleges. (2004). Herbology. Seoul : Youngrimsa.
  2. J. Keizer & G. Magnus. (1989). ATP-sensitive potassium channel and bursting in the pancreatic beta cell. A theoretical study. Biophysical Journal, 56(2), 229-242. DOI : 10.1016/s0006-3495(89)82669-4 https://doi.org/10.1016/S0006-3495(89)82669-4
  3. N. Kerru, A. Singh-Pillay, P. Awolade & P. Singh. (2018). Current anti-diabetic agents and their molecular targets: A review. European Journal of Medicinal Chemistry, 152, 436-488. DOI : 10.1016/j.ejmech.2018.04.061 https://doi.org/10.1016/j.ejmech.2018.04.061
  4. S. Seino. (2012). Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia, 55(8), 2096-2108. DOI : 10.1007/s00125-012-2562-9 https://doi.org/10.1007/s00125-012-2562-9
  5. C. R. Sirtori et al. (1978). Disposition of metformin (N,N-dimethylbiguanide) in man. Clinical Pharmacology & Therapeutics, 24(6), 683-693. DOI : 10.1002/cpt1978246683 https://doi.org/10.1002/cpt1978246683
  6. X. Han et al. (2017). Metformin ameliorates insulitis in STZ-induced diabetic mice. PeerJ, 5, e3155. DOI : 10.7717/peerj.3155 https://doi.org/10.7717/peerj.3155
  7. S. H. Park & G. Y. Kim. (2010). Blood glucose level, insulin content and biochemical variables of complexcity extract from oriental medicinal plants on diabetes rats. The Korean Journal of Food And Nutrition, 23(2), 258-268.
  8. Y.-Y. Xu et al. (2017). Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice. Journal of Pharmacy and Pharmacology, 69(10), 1409-1417. DOI : 10.1111/jphp.12778 https://doi.org/10.1111/jphp.12778
  9. H. J. Choi. (2004). The emperor's inner circle rumor (sang). Seoul : Free Books.
  10. C. M. Kim, (1997). The chinese medicines dictionary. Seoul : Jungdam.
  11. Y. G. Kim, G. H. Yang & S. I. Cho. (2005). Anti-oxidative effects of dendrobii herba on toxic agent induced kidney cell injury. Master's thesis. Dongshin University, Naju.
  12. H. J. Han, J. H. Kim, H. B. Cho & G. S. Choi. (2000). Effects of herba dendrobii on the ovariectomized rat model of postmenopausal osteoporosis. The Journal Of Oriental Gynecology, 13(2), 120-135.
  13. S. H. Yoo. (2018). How to test diabetes complications. Proceedings of KAIM Autumn Conference 2018, 2018(2), 166-168.
  14. J. Heo. (1994). Donguibogam. Seoul : Yeogang Publishing Co.
  15. S. D. Park et al. (2007). Comparison of immunomodualtory effects of water-extracted adenophorae radix, liriopis tuber, dendrobii herba, polygonati odorati rhizoma and polygonati rhizoma. Korean Journal of Oriental Physiology & Pathology, 21(2), 414-424.
  16. M. HwangBo, S. S. Roh & H. S. Seo. (2010). Effects of dendrobii herba and punica granatum extract on the anti-oxidant, anti-inflammatory, anti-wrinkle and whitening. The Journal of Korean Oriental Ophthalmology & Otorhinolaryngology & Dermatology, 23(3), 11-32.
  17. M. Ohsugi et al. (1999). Active-oxygen scavenging activity of traditional nourishing-tonic herbal medicines and active constituents of rhodiola sacra. Journal of Ethnopharmacology, 67(1), 111-119. DOI : 10.1016/s0378-8741(98)00245-1 https://doi.org/10.1016/S0378-8741(98)00245-1
  18. M. Y. Yoon et al. (2007). Protective effect of methanolic extracts from dendrobium nobile Lindl. on H2O2-induced neurotoxicity in PC12 cells. Journal of the Korean Society for Applied Biological Chemistry, 50(1), 63-67.
  19. K. J. Lee. (1991). Studies on the effect of panax ginseng(Red ginseng) and dendrobium moniliforme on metabolites of alloxan induced diabetic rats. Master's thesis. Dongguk University, Seoul.
  20. American Diabetes Association. (2018). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2018. Diabetes Care, 41(Supplement 1), S13-S27. DOI : 10.2337/dc18-s002 https://doi.org/10.2337/dc18-S002
  21. Taylor. R. (2013). Type 2 diabetes: Etiology and reversibility. Diabetes Care, 36(4), 1047-1055. DOI : 10.2337/dc12-1805 https://doi.org/10.2337/dc12-1805
  22. J. C. Ra, J. H. Bae, H. G. Park & K. S. Kang. (2003). Studies on a new alimentotherapy for diabetic patients. Journal of the Korean Society of Food Science and Nutrition, 32(4), 614-620. DOI : 10.3746/jkfn.2003.32.4.614 https://doi.org/10.3746/jkfn.2003.32.4.614
  23. S. Y. Rhee. (2018). Monotherapy in type 2 diabetes mellitus patients 2017: A position statement of the korean diabetes association. The Journal of Korean Diabetes, 19(1), 15-22. DOI : 10.4093/jkd.2018.19.1.15 https://doi.org/10.4093/jkd.2018.19.1.15
  24. J. K. Grover, V. Vats & S. S. Rathi. (2000). Anti-hyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism. Journal of Ethnopharmacology, 73(3), 461-470. DOI : 10.1016/s0378-8741(00)00319-6 https://doi.org/10.1016/S0378-8741(00)00319-6