DOI QR코드

DOI QR Code

Model updating and damage detection in multi-story shear frames using Salp Swarm Algorithm

Ghannadi, Parsa;Kourehli, Seyed Sina

  • Received : 2019.02.27
  • Accepted : 2019.04.19
  • Published : 2019.07.25

Abstract

This paper studies damage detection as an optimization problem. A new objective function based on changes in natural frequencies, and Natural Frequency Vector Assurance Criterion (NFVAC) was developed. Due to their easy and fast acquisition, natural frequencies were utilized to detect structural damages. Moreover, they are sensitive to stiffness reduction. The method presented here consists of two stages. Firstly, Finite Element Model (FEM) is updated. Secondly, damage severities and locations are determined. To minimize the proposed objective function, a new bio-inspired optimization algorithm called salp swarm was employed. Efficiency of the method presented here is validated by three experimental examples. The first example relates to three-story shear frame with two single damage cases in the first story. The second relates to a five-story shear frame with single and multiple damage cases in the first and third stories. The last one relates to a large-scale eight-story shear frame with minor damage case in the first and third stories. Moreover, the performance of Salp Swarm Algorithm (SSA) was compared with Particle Swarm Optimization (PSO). The results show that better accuracy is obtained using SSA than using PSO. The obtained results clearly indicate that the proposed method can be used to determine accurately and efficiently both damage location and severity in multi-story shear frames.

Keywords

changes in natural frequencies;natural frequency vector assurance criterion;salp swarm;optimization;finite element model updating;damage detection

References

  1. Amezquita-Sanchez, J.P. and Adeli, H. (2016), "Signal processing techniques for vibration-based health monitoring of smart structures", Arch. Comput. Meth. Eng., 23(1), 1-15. https://doi.org/10.1007/s11831-014-9135-7. https://doi.org/10.1007/s11831-014-9135-7
  2. Chen, J., Chen, X. and Liu, W. (2014), "Complete inverse method using ant colony optimization algorithm for structural parameters and excitation identification from output only measurements", Math. Prob. Eng., 2014, Article ID 185487, 18. http://dx.doi.org/10.1155/2014/185487.
  3. Choubey, A., Sehgal, D.K. and Tandon, N. (2006), "Finite element analysis of vessels to study changes in natural frequencies due to cracks", Int. J. Press. Ves. Pip., 83(3), 181-187. https://doi.org/10.1016/j.ijpvp.2006.01.001. https://doi.org/10.1016/j.ijpvp.2006.01.001
  4. Dahak, M., Touat, N. and Benseddiq, N. (2017), "On the classification of normalized natural frequencies for damage detection in cantilever beam", J. Sound Vib., 402, 70-84. http://dx.doi.org/10.1016/j.jsv.2017.05.007. https://doi.org/10.1016/j.jsv.2017.05.007
  5. DeVore, C., Jiang, Z., Christenson, R.E., Stromquist-LeVoir, G. and Johnson, E.A. (2015), "Experimental verification of substructure identification for damage detection in shear buildings", J. Eng. Mech., 142(1), 04015060. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000929.
  6. Eberhart, R. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Proceedings of the Sixth International Symposium, Nagoya, Japan, October. doi: https://doi.org/10.1109/MHS.1995.494215.
  7. Esfandiari, A., Bakhtiari-Nejad, F. and Rahai, A. (2013), "Theoretical and experimental structural damage diagnosis method using natural frequencies through an improved sensitivity equation", Int. J. Mech. Sci., 70, 79-89. https://doi.org/10.1016/j.ijmecsci.2013.02.006. https://doi.org/10.1016/j.ijmecsci.2013.02.006
  8. Ghannadi, P. and Kourehli, S.S. (2018), "Investigation of the accuracy of different finite element model reduction techniques", Struct. Monit. Mainten., 5(3), 417-428. http://dx.doi.org/10.12989/smm.2018.5.3.417.
  9. Ghodrati Amiri, G., Hosseinzadeh, A.Z., Bagheri, A. and Koo, K.Y. (2013), "Damage prognosis by means of modal residual force and static deflections obtained by modal flexibility based on the diagonalization method", Smart Mater. Struct., 22(7), 075032. http://dx.doi.org/10.1088/0964-1726/22/7/075032. https://doi.org/10.1088/0964-1726/22/7/075032
  10. Hassiotis, S. (2000), "Identification of damage using natural frequencies and Markov parameters", Comput. Struct., 74(3), 365-373. https://doi.org/10.1016/S00457949(99)00034-6. https://doi.org/10.1016/S0045-7949(99)00034-6
  11. He, W.Y., Zhu, S. and Ren, W.X. (2019), "Two-phase damage detection of beam structures under moving load using multiscale wavelet signal processing and wavelet finite element model", Appl. Math. Model., 66, 728-744. https://doi.org/10.1016/j.apm.2018.10.005. https://doi.org/10.1016/j.apm.2018.10.005
  12. Hosseinzadeh, A.Z., Bagheri, A., Ghodrati Amiri, G. and Koo, K.Y. (2014), "A flexibility-based method via the iterated improved reduction system and the cuckoo optimization algorithm for damage quantification with limited sensors", Smart Mater. Struct., 23(4), 045019. http://dx.doi.org/10.1088/0964-1726/23/4/045019. https://doi.org/10.1088/0964-1726/23/4/045019
  13. Hosseinzadeh, A.Z., Ghodrati Amiri, G. and Koo, K.Y. (2016a), "Optimization-based method for structural damage localization and quantification by means of static displacements computed by flexibility matrix", Eng. Optim., 48(4), 543-561. http://dx.doi.org/10.1080/0305215X.2015.1017476. https://doi.org/10.1080/0305215X.2015.1017476
  14. Hosseinzadeh, A.Z., Ghodrati Amiri, G., Razzaghi, S.S., Koo, K.Y. and Sung, S.H. (2016b), "Structural damage detection using sparse sensors installation by optimization procedure based on the modal flexibility matrix", J. Sound Vib., 381, 65-82. http://dx.doi.org/10.1016/j.jsv.2016.06.037. https://doi.org/10.1016/j.jsv.2016.06.037
  15. Humar, J., Bagchi, A. and Xu, H. (2006), "Performance of vibration-based techniques for the identification of structural damage", Struct. Hlth. Monit., 5(3), 215-241. https://doi.org/10.1177/1475921706067738. https://doi.org/10.1177/1475921706067738
  16. Kaveh, A. and Zolghadr, A. (2015), "An improved CSS for damage detection of truss structures using changes in natural frequencies and mode shapes", Adv. Eng. Softw., 80, 93-100. http://dx.doi.org/10.1016/j.advengsoft.2014.09.010. https://doi.org/10.1016/j.advengsoft.2014.09.010
  17. Khatir, S. and Wahab, M.A. (2019), "Fast simulations for solving fracture mechanics inverse problems using POD-RBF XIGA and Jaya algorithm", Eng. Fract. Mech., 205, 285-300. https://doi.org/10.1016/j.engfracmech.2018.09.032. https://doi.org/10.1016/j.engfracmech.2018.09.032
  18. Khatir, S., Brahim, B., Capozucca, R. and Wahab, M.A. (2018b), "Damage detection in CFRP composite beams based on vibration analysis using proper orthogonal decomposition method with radial basis functions and cuckoo search algorithm", Compos. Struct., 187, 344-353. https://doi.org/10.1016/j.compstruct.2017.12.058. https://doi.org/10.1016/j.compstruct.2017.12.058
  19. Khatir, S., Dekemele, K., Loccufier, M., Khatir, T. and Wahab, M.A. (2018a), "Crack identification method in beam-like structures using changes in experimentally measured frequencies and Particle Swarm Optimization", Comptes Rendus Mecanique, 346(2), 110-120. https://doi.org/10.1016/j.crme.2017.11.008. https://doi.org/10.1016/j.crme.2017.11.008
  20. Khatir, S., Wahab, M.A., Boutchicha, D. and Khatir, T. (2019), "Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis", J. Sound Vib., 448, 230-246. https://doi.org/10.1016/j.jsv.2019.02.017. https://doi.org/10.1016/j.jsv.2019.02.017
  21. Koo, K.Y., Sung, S.H. and Jung, H.J. (2011), "Damage quantification of shear buildings using deflections obtained by modal flexibility", Smart Mater. Struct., 20(4), 045010. http://dx.doi.org/10.1088/0964-1726/20/4/045010. https://doi.org/10.1088/0964-1726/20/4/045010
  22. Kourehli, S.S., Amiri, G.G., Ghafory-Ashtiany, M. and Bagheri, A. (2013), "Structural damage detection based on incomplete modal data using pattern search algorithm", J. Vib. Control, 19(6), 821-833. http://doi.org/10.1177/1077546312438428. https://doi.org/10.1177/1077546312438428
  23. Lin, C.C., Lin, G.L. and Hsieh, K.S. (2014), "Damage assessment of seismically excited buildings through incomplete measurements", J. Press. Ves. Technol., 136(6), 061801. http://doi.org/10.1115/1.4027326. https://doi.org/10.1115/1.4027326
  24. Majumdar, A., Maiti, D.K. and Maity, D. (2012), "Damage assessment of truss structures from changes in natural frequencies using ant colony optimization", Appl. Math. Comput., 218(19), 9759-9772. https://doi.org/10.1016/j.amc.2012.03.031.
  25. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H. and Mirjalili, S.M. (2017), "Salp Swarm Algorithm: A bioinspired optimizer for engineering design problems", Adv. Eng. Softw., 114, 163-191. http://dx.doi.org/10.1016/j.advengsoft.2017.07.002. https://doi.org/10.1016/j.advengsoft.2017.07.002
  26. Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2019), "A fast and robust method for damage detection of truss structures", Appl. Math. Model., 68, 368-382. https://doi.org/10.1016/j.apm.2018.11.025. https://doi.org/10.1016/j.apm.2018.11.025
  27. Noori, M., Wang, H., Altabey, W. and Silik, A. (2018), "A modified wavelet energy rate-based damage identification method for steel bridges", Scientia Iranica., 25, 3210-3230. http://dx.doi.org/10.24200/sci.2018.20736
  28. Parrany, A.M. (2019), "Damage detection in circular cylindrical shells using active thermography and 2-D discrete wavelet analysis", Thin Wall. Struct., 136, 34-49. https://doi.org/10.1016/j.tws.2018.12.028. https://doi.org/10.1016/j.tws.2018.12.028
  29. Patil, D.P. and Maiti, S.K. (2003), "Detection of multiple cracks using frequency measurements", Eng. Fract. Mech., 70(12), 1553-1572. https://doi.org/10.1016/S0013-7944(02)00121-2. https://doi.org/10.1016/S0013-7944(02)00121-2
  30. Qarib, H. and Adeli, H. (2016), "A comparative study of signal processing methods for structural health monitoring", J. Vibroeng., 18(4), 2186-2204. http://dx.doi.org/10.21595/jve.2016.17218. https://doi.org/10.21595/jve.2016.17218
  31. Rahami, H., Amiri, G.G., Tehrani, H.A. and Akhavat, M. (2018), "Structural health monitoring for multi-story shear frames based on signal processing approach", Iran. J. Sci. Technol., Tran. Civil Eng., 42(3), 287-303. https://doi.org/10.1007/s40996-018-0096-1. https://doi.org/10.1007/s40996-018-0096-1
  32. Rasouli, A., Kourehli, S.S., Amiri, G.G. and Kheyroddin, A. (2015), "A two-stage method for structural damage prognosis in shear frames based on story displacement index and modal residual force", Adv. Civil Eng., 2015, Article ID 527537, 15. http://dx.doi.org/10.1155/2015/527537.
  33. Su, W.C., Huang, C.S., Lien, H.C. and Le, Q.T. (2017), "Identifying the stiffness parameters of a structure using a subspace approach and the Gram-Schmidt process in a wavelet domain", Adv. Mech. Eng., 9(7), 1687814017707649. https://doi.org/10.1177%2F1687814017707649.
  34. Sun, H. and Buyukozturk, O. (2016), "Probabilistic updating of building models using incomplete modal data", Mech. Syst. Signal Pr., 75, 27-40. https://doi.org/10.1016/j.ymssp.2015.12.024. https://doi.org/10.1016/j.ymssp.2015.12.024
  35. Tiachacht, S., Bouazzouni, A., Khatir, S., Abdel Wahab, M., Behtani, A. and Capozucca, R. (2018), "Damage assessment in structures using combination of a modified Cornwell indicator and genetic algorithm", Eng. Struct., 177, 421-430. https://doi.org/10.1016/j.engstruct.2018.09.070. https://doi.org/10.1016/j.engstruct.2018.09.070
  36. Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T., Nguyen-Ngoc, L. and Abdel Wahab, M. (2018), "Model updating for Nam O Bridge using particle swarm optimization algorithm and genetic algorithm", Sensors, 18(12), 4131. http://dx.doi.org/10.3390/s18124131. https://doi.org/10.3390/s18124131
  37. Vakil-Baghmisheh, M.T., Peimani, M., Sadeghi, M.H. and Ettefagh, M.M. (2008), "Crack detection in beam-like structures using genetic algorithms", Appl. Soft Comput., 8(2), 1150-1160. https://doi.org/10.1016/j.asoc.2007.10.003. https://doi.org/10.1016/j.asoc.2007.10.003
  38. Wang, D., Xiang, W. and Zhu, H. (2014), "Damage identification in beam type structures based on statistical moment using a two step method", J. Sound Vib., 333(3), 745-760. http://dx.doi.org/10.1016/j.jsv.2013.10.007. https://doi.org/10.1016/j.jsv.2013.10.007
  39. Wang, D., Xiang, W., Zeng, P. and Zhu, H. (2015a), "Damage identification in shear-type structures using a proper orthogonal decomposition approach", Journal of Sound and Vibration., 355, 135-149. https://doi.org/10.1016/j.jsv.2015.06.043. https://doi.org/10.1016/j.jsv.2015.06.043
  40. Wang, D., Xiang, W., Zeng, P. and Zhu, H. (2015b), "Damage identification in shear-type structures using a proper orthogonal decomposition approach", J. Sound Vib., 355, 135-149. http://dx.doi.org/10.1016/j.jsv.2015.06.043. https://doi.org/10.1016/j.jsv.2015.06.043
  41. Wang, D., Zhou, P., Jin, T. and Zhu, H. (2018), "Damage identification for beam structures using the laplace transformbased spectral element method and strain statistical moment", J. Aerosp. Eng., 31(3), 04018016. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000838. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000838
  42. Wang, X., Hu, N., Fukunaga, H. and Yao, Z.H. (2001), "Structural damage identification using static test data and changes in frequencies", Eng. Struct., 23(6), 610-621. https://doi.org/10.1016/S0141-0296(00)00086-9. https://doi.org/10.1016/S0141-0296(00)00086-9
  43. Xiang, W., Wang, D. and Zhu, H. (2014), "Damage identification in a plate structure based on strain statistical moment", Adv. Struct. Eng., 17(11), 1639-1655. https://doi.org/10.1260/1369-4332.17.11.1639. https://doi.org/10.1260/1369-4332.17.11.1639
  44. Xu, G.Y., Zhu, W.D. and Emory, B.H. (2007), "Experimental and numerical investigation of structural damage detection using changes in natural frequencies", J. Vib. Acoust., 129(6), 686-700. http://doi.org/10.1115/1.2731409. https://doi.org/10.1115/1.2731409
  45. Xu, Y.L., Zhang, J., Li, J.C. and Xia, Y. (2009), "Experimental investigation on statistical moment-based structural damage detection method", Struct. Hlth. Monit., 8(6), 555-571. https://doi.org/10.1177/1475921709341011. https://doi.org/10.1177/1475921709341011
  46. Yang, Y., Li, J.L., Zhou, C.H., Law, S.S. and Lv, L. (2019), "Damage detection of structures with parametric uncertainties based on fusion of statistical moments", J. Sound Vib., 442, 200-219. https://doi.org/10.1016/j.jsv.2018.10.005. https://doi.org/10.1016/j.jsv.2018.10.005
  47. Yang, Z. and Wang, L. (2010), "Structural damage detection by changes in natural frequencies", J. Intel. Mater. Syst. Struct., 21(3), 309-319. https://doi.org/10.1177/1045389X09350332. https://doi.org/10.1177/1045389X09350332
  48. Yin, T., Jiang, Q.H. and Yuen, K.V. (2017), "Vibration-based damage detection for structural connections using incomplete modal data by Bayesian approach and model reduction technique", Eng. Struct., 132, 260-277. http://dx.doi.org/10.1016/j.engstruct.2016.11.035. https://doi.org/10.1016/j.engstruct.2016.11.035
  49. Zare Hosseinzadeh, A., Ghodrati Amiri, G. and Seyed Razzaghi, S.A. (2017), "Model-based identification of damage from sparse sensor measurements using Neumann series expansion", Invers. Prob. Sci. Eng., 25(2), 239-259. https://doi.org/10.1080/17415977.2016.1160393. https://doi.org/10.1080/17415977.2016.1160393
  50. Zenzen, R., Belaidi, I., Khatir, S. and Wahab, M.A. (2018). "A damage identification technique for beam-like and truss structures based on FRF and Bat Algorithm", Comptes Rendus Mecanique., 346(12), 1253-1266. https://doi.org/10.1016/j.crme.2018.09.003. https://doi.org/10.1016/j.crme.2018.09.003
  51. Zhu, J.J., Huang, M. and Lu, Z.R. (2017), "Bird mating optimizer for structural damage detection using a hybrid objective function", Swarm Evol. Comput., 35, 41-52. http://dx.doi.org/10.1016/j.swevo.2017.02.006. https://doi.org/10.1016/j.swevo.2017.02.006
  52. Zhu, L.F., Ke, L.L., Zhu, X.Q., Xiang, Y. and Wang, Y.S. (2019), "Crack identification of functionally graded beams using continuous wavelet transform", Compos. Struct., 210, 473-485. https://doi.org/10.1016/j.compstruct.2018.11.042. https://doi.org/10.1016/j.compstruct.2018.11.042