A Bibliometric Approach for Department-Level Disciplinary Analysis and Science Mapping of Research Output Using Multiple Classification Schemes

Gautam, Pitambar

  • Published : 2019.07.22


This study describes an approach for comparative bibliometric analysis of scientific publications related to (i) individual or several departments comprising a university, and (ii) broader integrated subject areas using multiple disciplinary schemes. It uses a custom dataset of scientific publications (ca. 15,000 articles and reviews, published during 2009-2013, and recorded in the Web of Science Core Collections) with author affiliations to the research departments, dedicated to science, technology, engineering, mathematics, and medicine (STEMM), of a comprehensive university. The dataset was subjected, at first, to the department level and discipline level analyses using the newly available KAKEN-L3 classification (based on MEXT/JSPS Grants-in-Aid system), hierarchical clustering, correspondence analysis to decipher the major departmental and disciplinary clusters, and visualization of the department-discipline relationships using two-dimensional stacked bar diagrams. The next step involved the creation of subsets covering integrated subject areas and a comparative analysis of departmental contributions to a specific area (medical, health and life science) using several disciplinary schemes: Essential Science Indicators (ESI) 22 research fields, SCOPUS 27 subject areas, OECD Frascati 38 subordinate research fields, and KAKEN-L3 66 subject categories. To illustrate the effective use of the science mapping techniques, the same subset for medical, health and life science area was subjected to network analyses for co-occurrences of keywords, bibliographic coupling of the publication sources, and co-citation of sources in the reference lists. The science mapping approach demonstrates the ways to extract information on the prolific research themes, the most frequently used journals for publishing research findings, and the knowledge base underlying the research activities covered by the publications concerned.


bibliometry;science map;correspondence analysis;clustering;research field;cross-disciplinarity;co-word;co-citation;KAKEN-L3