Complete genome sequence of Microbacterium aurum strain KACC 15219T, a carbohydrate-degrading bacterium

탄수화물 분해 세균 Microbacterium aurum KACC 15219T의 유전체 염기서열 해독

Jung, YeonGyun;Jung, Byung Kwon;Park, Chang Eon;Ibal, Jerald Conrad;Kim, Sang-Jun;Shin, Jae-Ho
정연균;정병권;박창언;제랄드 콘라드 이발;김상준;신재호

  • Received : 2019.02.27
  • Accepted : 2019.04.10
  • Published : 2019.06.30


The complete genomic information of Microbacterium aurum KACC $15219^T$ (= IFO $15204^T$ = DSM $8600^T$) is described. The genome of M. aurum KACC $15219^T$ contains 3,096 protein coding genes and an average G+C content of 69.9% in its chromosome (3.42 Mbp). This strain can use various carbon sources for growth, including quinic acid. Quinic acid is used as a substrate for the synthesis of aromatic amino acids via the shikimate pathway which are useful in the industry. M. aurum KACC $15219^T$ will provide basis to improve our understanding of this organism and allow more efficient application of the strain to industry.


Microbacterium aurum;aromatic amino acids;quinic acid;shikimate pathway


  1. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity GM, Kodira CD, Kyrpides N, Madupu R, Markowitz V, et al. 2008. Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMICS 12, 137-141.
  2. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 75.
  3. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, et al. 2013. Nonhybrid, finished microbial genome assemblies from longread SMRT sequencing data. Nat. Methods 10, 563-569.
  4. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323, 133-138.
  5. Guo J, Carrington Y, Alber A, and Ehlting J. 2014. Molecular characterization of quinate and shikimate metabolism in Populus trichocarpa. J. Biol. Chem. 289, 23846-23858.
  6. Justice NB, Norman A, Brown CT, Singh A, Thomas BC, and Banfield JF. 2014. Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms. BMC Genomics 15, 1107.
  7. Koma D, Yamanaka H, Moriyoshi K, Ohmoto T, and Sakai K. 2012. Production of aromatic compounds by metabolically engineered Escherichia coli with an expanded shikimate pathway. Appl. Environ. Microbiol. 78, 6203-6216.
  8. Markowitz VM, Szeto E, Palaniappan K, Grechkin Y, Chu K, Chen IMA, Dubchak I, Anderson I, Lykidis A, Mavromatis K, et al. 2008. The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res. 36, D528-D533.
  9. Nzila A, Jung BK, Kim MC, Ibal JC, Budiyanto F, Musa MM, Thukair A, Kim SJ, and Shin JH. 2018. Complete genome sequence of the polycyclic aromatic hydrocarbons biodegrading bacterium Idiomarina piscisalsi strain 10PY1A isolated from oil-contaminated soil. Korean J. Microbiol. 54, 289-292.
  10. Yokota A, Takeuchi M, and Weiss N. 1993. Proposal of two new species in the genus Microbacterium: Microbacterium dextranolyticum sp. nov. and Microbacterium aurum sp. nov. Int. J. Syst. Evol. Microbiol. 43, 549-554.


Supported by : Rural Development Administration