DOI QR코드

DOI QR Code

Draft genome sequence of Senegalimassilia sp. KGMB 04484 isolated from healthy Korean human feces

건강한 한국인 분변으로부터 분리된 Senegalimassilia sp. KGMB 04484 균주의 유전체 염기서열 초안

Han, Kook-Il;Kang, Se Won;Kim, Ji-Sun;Lee, Keun Chul;Eom, Mi Kyung;Suh, Min Kuk;Kim, Han Sol;Park, Seung-Hwan;Lee, Ju Huck;Park, Jam-Eon;Oh, Byeong Seob;Yu, Seung Yeob;Choi, Seung-Hyeon;Lee, Dong Ho;Yoon, Hyuk;Kim, Byung-Yong;Lee, Je Hee;Lee, Jung-Sook
한국일;강세원;김지선;이근철;엄미경;서민국;김한솔;박승환;이주혁;박잠언;오병섭;유승엽;최승현;이동호;윤혁;김병용;이제희;이정숙

  • Received : 2019.02.14
  • Accepted : 2019.03.20
  • Published : 2019.06.30

Abstract

Senegalimassilia sp. KGMB 04484 was isolated from fecal samples obtained from a healthy Korean. The whole-genome sequence of Senegalimassilia sp. KGMB 04484 was analyzed using the PacBio Sequel platform. The genome comprises a 2,748,041 bp chromosome with a G+C content of 61.18%, 2,300 total genes, 2,139 protein-coding gene, 21 rRNA genes, and 51 tRNA genes. Also, we found that strain KGMB 04484 had some genes for hydrolysis enzyme, fatty acid biosynthesis and metabolism in its genome based on the result of genome analysis. Those genes of KGMB 04484 may be related to regulation of human health and digest.

Keywords

Senegalimassilia sp. KGMB 04484;cellulase;fatty acid;feces

References

  1. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, et al. 2012. SEED servers: high-performance access to the SEED genomes, annotations, and metabolic models. PLoS One 7, e48053. https://doi.org/10.1371/journal.pone.0048053
  2. Bairoch A and Apweiler R. 2000. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 1, 45-48.
  3. Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI, and Martinez JA. 2019. Diet, gut microbiota, and obesity: Links with host genetics and epigenetics and potential applications. Adv. Nutr. 10, S17-S30. https://doi.org/10.1093/advances/nmy078
  4. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, Rattei T, Mende DR, Sunagawa S, Kuhn M, et al. 2016. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic, and viral sequences. Nucleic Acids Res. 4, D286-D293.
  5. Khanna S and Tosh PK. 2014. A clinician's primer on the role of the microbiome in human health and disease. Mayo Clin. Proc. 89, 107-114. https://doi.org/10.1016/j.mayocp.2013.10.011
  6. Lagier JC, Elkarkouri K, Rivet R, Couderc C, Raoult D, and Fournier PE. 2013. Noncontiguous-finished genome sequence and description of Senegalemassilia anaerobia gen. nov., sp. nov. Stand. Genomic Sci. 7, 343-356. https://doi.org/10.4056/sigs.3246665
  7. Lee I, Chalita M, Ha SM, Na SI, Yoon SH, and Chun J. 2017. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 67, 2053-2057. https://doi.org/10.1099/ijsem.0.001872
  8. Lowe TM and Chan PP. 2016. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 8, W54-W57.
  9. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, Floden EW, Gardner PP, Jones TA, Tate J, et al. 2015. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43, D130-D137. https://doi.org/10.1093/nar/gku1063
  10. Sender R, Fuchs S, and Milo R. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533. https://doi.org/10.1371/journal.pbio.1002533

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Korea Research Institute of Bioscience & Biotechnology (KRIBB)