Formulation of a medium for the fruiting body development of Myxococcus stipitatus

Myxococcus stipitatus의 자실체 형성을 위한 배지 조성

Hyun, Hyesook;Choi, Juo;An, Dongju;Cho, Kyungyun

  • Received : 2019.04.01
  • Accepted : 2019.04.24
  • Published : 2019.06.30


Myxococcus stipitatus, a myxobacterium, forms spherical fruiting bodies with stems on edaphic substrates in enrichment cultures for isolation. However, an agar medium on which purely isolated strains of M. stipitatus form this type of fruiting bodies has not been known until now. In this study, since M. stipitatus DSM 14675 forms a hemispherical fruiting body-like structure on CYS agar medium, the effects of CYS medium components on fruiting body formation were investigated. Based on the results obtained, an agar medium on which M. stipitatus forms spherical fruiting bodies with stems was developed. Additionally, a liquid medium in which M. stipitatus grows in a dispersed manner was also formulated in this investigation.


Myxococcus stipitatus;fruiting body formation;myxobacteria


  1. Campos JM, Geisselsoder J, and Zusman DR. 1978. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119, 167-178.
  2. Campos JM and Zusman DR. 1975. Regulation of development in Myxococcus xanthus: effect of 3': 5'-cyclicAMP, ADP, and nutrition. Proc. Natl. Acad. Sci. USA 72, 518-522.
  3. Casadaban MJ. 1976. Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104, 541-555.
  4. Cho K and Zusman DR. 1999. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol. Microbiol. 34, 714-725.
  5. Dawid W. 2000. Biology and global distribution of myxobacteria in soil. FEMS Microbiol. Rev. 24, 403-427.
  6. Dey A, Vassallo CN, Conklin AC, Pathak DT, Troselj V, and Wall D. 2016. Sibling rivalry in Myxococcus xanthus is mediated by kin recognition and a polyploid prophage. J. Bacteriol. 198, 994-1004.
  7. Dworkin M. 1962. Nutritional requirements for vegetative growth of Myxococcus xanthus. J. Bacteriol. 84, 250-257.
  8. Grilione PL and Pangborn J. 1975. Scanning electron microscopy of fruiting body formation by myxobacteria. J. Bacteriol. 124, 1558-1565.
  9. Hagen DC, Bretscher AP, and Kaiser D. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64, 284-296.
  10. Huntley S, Kneip S, Treuner-Lange A, and Sogaard-Andersen L. 2013. Complete genome sequence of Myxococcus stipitatus strain DSM 14675, a fruiting myxobacterium. Genome Announc. 1, e0010013.
  11. Kaiser D, Robinson M, and Kroos L. 2010. Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb. Perspect. Biol. 2, a000380.
  12. Kroos L, Kuspa A, and Kaiser D. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117, 252-266.
  13. Lang E and Stackebrandt E. 2009. Emended descriptions of the genera Myxococcus and Corallococcus, typification of the species Myxococcus stipitatus and Myxococcus macrosporus and a proposal that they be represented by neotype strains. Request for an opinion. Int. J. Syst. Evol. Microbiol. 59, 2122-2128.
  14. Lee B, Lee C, and Cho K. 2003. Isolation of dispersed mutants from wild myxobacteria. Korean J. Microbiol. Biotechnol. 31, 342-347.
  15. Lee C, Shin H, and Cho K. 2014. Development of a quantitative induction method for Chondromyces crocatus fruiting body formation. Korean J. Microbiol. 50, 173-178.
  16. Park SY, Lee BS, Kim JH, Lee CY, Jang E, and Cho K. 2004. Isolation and characterization of bacteriolytic wild myxobacteria. Korean J. Microbiol. Biotechnol. 32, 218-223.
  17. Reichenbach H. 2005. Myxococcales, pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, and Garrity GM. (eds.), Bergey's manual of systematic bacteriology, 2nd ed. Bergey's Manual Trust, East Lansing, MI., USA.
  18. Shi W, Kohler T, and Zusman DR. 1994. Motility and chemotaxis in Myxococcus xanthus. Methods Mol. Genet. 3, 258-269.
  19. Shimkets LJ, Dworkin M, and Reichenbach H. 2006. The myxobacteria. Prokaryotes 7, 31-115.
  20. Shin H, Youn J, An D, and Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41, 44-51.
  21. Wall D, Kolenbrander PE, and Kaiser D. 1999. The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility, and development. J. Bacteriol. 181, 24-33.