DOI QR코드

DOI QR Code

Adsorption and Desorption Characteristics of Sr, Cs, and Na Ions with Na-A Zeolite Synthesized from Coal Fly Ash in Low-Alkali Condition

석탄 비산재로부터 저알칼리 조건에서 합성된 Na-A 제올라이트의 Sr, Cs 및 Na 이온의 흡탈착 특성

  • Choi, Jeong-Hak (Department of Environmental Engineering, Catholic University of Pusan) ;
  • Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan)
  • 최정학 (부산가톨릭대학교 환경공학과) ;
  • 이창한 (부산가톨릭대학교 환경행정학과)
  • Received : 2019.04.24
  • Accepted : 2019.06.18
  • Published : 2019.06.30

Abstract

A zeolitic material (Z-Y2) was synthesized from Coal Fly Ash (CFA) using a fusion/hydrothermal method under low-alkali condition (NaOH/CFA = 0.6). The adsorption performance of the prepared zeolite was evaluated by monitoring its removal efficiencies for Sr and Cs ions, which are well-known as significant radionuclides in liquid radioactive waste. The XRD (X-ray diffraction) patterns of the synthesized Z-Y2 indicated that a Na-A type zeolite was formed from raw coal fly ash. The SEM (scanning electron microscope) images also showed that a cubic crystal structure of size $1{\sim}3{\mu}m$ was formed on its surface. In the adsorption kinetic analysis, the adsorption of Sr and Cs ions on Z-Y2 fitted the pseudo-second-order kinetic model well, instead of the pseudo-first-order kinetic model. The second-order kinetic rate constant ($k_2$) was determined to be $0.0614g/mmol{\cdot}min$ for Sr and $1.8172g/mmol{\cdot}min$ for Cs. The adsorption equilibria of Sr and Cs ions on Z-Y2 were fitted successfully by Langmuir model. The maximum adsorption capacity ($q_m$) of Sr and Cs was calculated as 1.6846 mmol/g and 1.2055 mmol/g, respectively. The maximum desorption capacity ($q_{dm}$) of the Na ions estimated via the Langmuir desorption model was 2.4196 mmol/g for Sr and 2.1870 mmol/g for Cs. The molar ratio of the desorption/adsorption capacity ($q_{dm}/q_m$) was determined to be 1.44 for Na/Sr and 1.81 for Na/Cs, indicating that the amounts of desorbed Na ions and adsorbed Sr and Cs ions did not yield an equimolar ratio when using Z-Y2.

Acknowledgement

Supported by : 한국연구재단

References

  1. Chegrouche, S., Mellah, A., Barkat, M., 2009, Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies, Desalination, 235, 306-318. https://doi.org/10.1016/j.desal.2008.01.018
  2. El-Kamash, A. M., 2008, Evaluation of zeolite A for the sorptive removal of $Cs^+$ and $Sr^{2+}$ ions from aqueous solutions using batch and fixed bed column operations, J. Hazard. Mater., 151, 432-445. https://doi.org/10.1016/j.jhazmat.2007.06.009
  3. Erten-Kaya, Y., Cakicioglu-Ozkan, F., 2012, Effect of ultrasound on the kinetics of cation exchange in NaX zeolite, Ultrason. Sonochem., 19, 701-706. https://doi.org/10.1016/j.ultsonch.2011.10.010
  4. Ha, J. C., Song, Y. J., 2015, An Investigation of awareness on the Fukushima nuclear accident and radioactive contamination, J. Rad. Prot. Res., 41, 7-14.
  5. Ho, Y. S., McKay, G., 1998, Sorption of dye from aqueous solution by peat, Chem. Eng. J., 70, 115-124. https://doi.org/10.1016/S0923-0467(98)00076-1
  6. Hwang, D. S., Choung, Y. J., Choung, W. M., Park, J. H., Park, S. J., 2002, Precipitation separation of $^{99}Mo$ by ${\alpha}$-benzoinoxime in simulated radioactive solution, J. Kor. Ind. Eng. Chem., 13, 82-86.
  7. Jeong, C. H., Park, S. W., Kim, S. J., Lee, J. H., 1995, Effect of ionic strength and pH on Cs and Sr sorption of Na-bentonite, J. Kor. Soc. Environ. Eng., 17, 553-561.
  8. Khan, S. A., Rehman, R., Khan, M. A., 1995, Sorption of strontium on bentonite, Waste Manage., 15, 641-650. https://doi.org/10.1016/0956-053X(96)00049-9
  9. Kim, C. W., Kim, J. Y., Choi, J. R., Ji, P. K., Park, J. K., Shin, S. W., Ha, J. H., Song, M. J., 2004, Characteristics of vitrification process and vitrified form for radioactive waste, J. Kor. Rad. Waste Soc., 2, 175-180.
  10. Krishna, M. V. B., Rao, S. V., Arunachalam, J., Murali, M. S., Kumar, S., Manchanda, V. K., 2004, Removal of $^{137}Cs$ and $^{90}Sr$ from actual low level radioactive waste solutions using moss as a phyto-sorbent, Sep. Purifi. Technol., 38, 149-161. https://doi.org/10.1016/j.seppur.2003.11.002
  11. Lagergren, S., 1898, Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1-39.
  12. Lee, C. H., Kam, S. K., Lee, M. G., 2017, Removal characteristics of Sr Ion by Na-A Zeolite synthesized using coal fly ash generated from a thermal power plant, J. Environ. Sci. Int., 26, 363-371. https://doi.org/10.5322/JESI.2017.26.3.363
  13. Lee, C. H., Lee, M. G., 2018, Evaluation of Exchange Capacities of $Ca^{2+}$ and $Mg^{2+}$ ions by Na-A Zeolite Synthesized from Coal Fly Ash, J. Environ. Sci. Int., 27, 975-982. https://doi.org/10.5322/JESI.2018.27.11.975
  14. Lee, C. H., Park, J. M., Lee, M. G., 2014, Adsorption charateristics of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash, J. Environ. Sci. Int., 23, 1987-1998. https://doi.org/10.5322/JESI.2014.23.12.1987
  15. Lee, C. H., Park, J. M., Lee, M. G., 2015, Competitive adsorption in binary solution with different mole ratio of Sr and Cs by zeolite A : Adsorption isotherm and kinetics, J. Environ. Sci. Int., 24, 151-162. https://doi.org/10.5322/JESI.2015.24.2.151
  16. Munthali, M. W., Johan, E., Aono, H., Matsue, N., 2015, $Cs^+$ and $Sr^{2+}$ adsorption selectivity of zeolites in relation to radioactive decontamination, J. Asian Cera. Soc., 3, 245-250. https://doi.org/10.1016/j.jascer.2015.04.002
  17. Periasamy, K., Namasivayam, C., 1994, Process development for removal and recovery of cadmium from wastewater by a low-cost adsorbent: adsorption rates and equilibrium studies, Ind. Eng. Chem. Res., 3, 317-320.
  18. Rahman, R. O. A., Ibrahim, H. A. S., Hanafy, M., Abdel-Monem, N. M., 2010, Assessment of synthetic zeolite Na A-X as sorbing barrier for strontium in a radioactive disposal facility, Chem. Eng. J., 157, 100-112. https://doi.org/10.1016/j.cej.2009.10.057
  19. Roy, K., Pal, D. K., Basua, S., Nayak, D., Lahiri, S., 2002, Synthesis of a new ion exchanger, zirconium vanadate and its application to the separation of barium and cesium radionuclides at tracer levels, Appl. Radiat. Isot., 57, 471-474. https://doi.org/10.1016/S0969-8043(02)00136-7
  20. Shaila, K., Deepa, P., Pralhad, P., 2014, Synthesis of zeolite using fly ash and its application in removal of $Cu^{2+},\;Ni^{2+},\;Mn^{2+}$ from paper industry effluent, Res. J. Chem. Sci., 4, 5-9.
  21. Singh, B. K., Tomar, R., Tomar, R., Tomar, S. S., 2011, Sorption of homologues of radionuclides by synthetic ion exchanger, Microporous Mesoporous Mater., 142, 629-640. https://doi.org/10.1016/j.micromeso.2011.01.006
  22. Smiciklas, I., Dimovic, S., Plecas, I., 2007, Removal of $Cs^{1+}$, $Sr^{2+}$ and $Co^{2+}$ from aqueous solutions by adsorption on natural clinoptilolite, Appl. Clay Sci., 35, 139-144. https://doi.org/10.1016/j.clay.2006.08.004
  23. Soco, E., Kalembkiewicz, J., 2013, Adsorption of nickel(II) and copper(II) ions from aqueous solution by coal fly ash, J. Environ. Chem. Eng., 1, 581-588. https://doi.org/10.1016/j.jece.2013.06.029
  24. Treacy, M. M. J., Higgins, J. B., 2001, Collection of Simulated XRD Powder Patterns for Zeolites, Elsevier, Amsterdam, 214-217.
  25. Xue, Z., Li, Z., Ma, J., Bai, X., Kang, Y., Hao, W., Li, R., 2014, Effective removal of $Mg^{2+}$ and $Ca^{2+}$ ions by mesoporous LTA zeolite, Desalination, 341, 10-18. https://doi.org/10.1016/j.desal.2014.02.025
  26. Yang, M. S., 2009, Selection of adsorbents and evaluation of basic properties for removal of ions from liquid radioactive wastes, J. Adv. Eng. Technol., 2, 189-194.
  27. Yang, W. W., Luo, G. S., Gong, X. C., 2005, Extraction and separation of metal ions by a column packed with polystyrene microcapsules containing Aliquat 336, Sep. Purif. Technol., 43, 175-182. https://doi.org/10.1016/j.seppur.2004.08.007
  28. Yu, W., He, J., Lin, W., Li, Y., Men, W., Wang, F., Huang, J., 2015, Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the Northwest Pacific, J. Environ. Radio., 142, 54-61. https://doi.org/10.1016/j.jenvrad.2015.01.005
  29. Zhang, R., Liu, S., 2017, Experimental and theoretical characterization of methane and $CO_2$ sorption hysteresis in coals based on Langmuir desorption, Int. J. Coal Geol., 171, 49-60. https://doi.org/10.1016/j.coal.2016.12.007
  30. Zhao, Y., Shao, Z., Chen, C., Hu, J., Chen, H., 2014, Effect of environmental conditions on the adsorption behavior of Sr(II) by Na-rectorite, Applied Clay Sci., 87, 1-6. https://doi.org/10.1016/j.clay.2013.11.021
  31. Zyrkowski, M., Neto, R. C., Santos, L. F., Witkowski, K., 2016, Characterization of fly-ash cenospheres from coal-fired power plant unit, Fuel, 174, 49-53. https://doi.org/10.1016/j.fuel.2016.01.061