DOI QR코드

DOI QR Code

The Study of Fermented Chestnut Meal and Its Rumen Fermentation Characteristics

밤의 부위별 발효사료 제조 및 이들의 반추위 내 발효특성에 관한 연구

  • Joo, Young-Ho (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University) ;
  • Kim, Dong-Hyeon (Department of Animal Sciences, University of Florida) ;
  • Lee, Hyuk-Jun (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University) ;
  • Lee, Seong-Shin (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University) ;
  • Paradhipta, Dimas H.V. (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University) ;
  • Ha, Chang-Ju (Livestock Division, Gyeongnam Provincial Government) ;
  • Kim, Sam-Churl (Division of Applied Life Science (BK21Plus, Insti. of Agric. & Life Sci.), Gyeongsang National University)
  • 주영호 (경상대학교 응용생명과학부(BK21Plus, 농업생명과학연구원)) ;
  • 김동현 (플로리다대학교 축산학과) ;
  • 이혁준 (경상대학교 응용생명과학부(BK21Plus, 농업생명과학연구원)) ;
  • 이성신 (경상대학교 응용생명과학부(BK21Plus, 농업생명과학연구원)) ;
  • ;
  • 하창주 (경상남도청 축산과) ;
  • 김삼철 (경상대학교 응용생명과학부(BK21Plus, 농업생명과학연구원))
  • Received : 2018.12.28
  • Accepted : 2019.02.18
  • Published : 2019.06.30

Abstract

The aim of present study was to investigate the effect of three types of Chestnut Meals (CM) on chemical composition and rumen fermentation characteristics of the fermented diet. The inoculants consisted of Lactobacillus acidophilus, Bacillus subtilis, and Sacaromyces cerevisiae and were applied to three different types of CM; Whole Chestnut (WC), endodermis (EN), and kernel (KE). All types of CMs were ensiled at $39^{\circ}C$ for 0, 1, 2, 4, or 6 days. After ensiling, the fermented CMs were sub-sampled for laboratory assays. On day six of fermentation, counts of the lactic acid-producing Bacillus subtilis, and yeast were higher (P<0.05) in WC than in the other CM types. On day four, KE had higher (P<0.05) crude protein content but lower (P<0.05) neutral detergent fiber and acid detergent fiber contents than the other treatments. In terms of rumen digestibility, KE had the highest (P<0.05) in vitro digestibility of dry matter (IVDMD), neutral detergent fiber digestibility (IVNDFD), total volatile fatty acid (VFA), propionate, butyrate concentrations, and total gas volume, as well as the lowest (P<0.05) acetate concentration. On the other hand, EN had the highest (P<0.05) pH and ammonia-N concentration in the rumen. In the rumen, even though WC application produced the highest microbial count and fermentation characteristics, it did not have a beneficial effect on rumen digestibility. Therefore, this study concluded that application of KE could be recommended due to the observed improvements in IVDMD and IVNDFD.

Acknowledgement

Supported by : 농림식품기술기획평가원

References

  1. Adesogan, A. T., 2005, Improving forage quality and animal performance with fibrolytic enzymes, 16th Florida Ruminant Nutrition Symposium, University of Florida, Gainesville, FL, USA.
  2. AOAC, 1990, Official methods of analysis, 15th ed., Association of Official Analytical Chemists, Arlington, VA, USA.
  3. Beuvink, J. M. W., Spoelstra, S. F., Hogendorp, R. J., 1992, An Automated method for measuring time-course of gas production of feedstuffs incubated with buffered rumen fluid, Neth. J. Agric. Sci., 40, 401-407.
  4. Cha, S. W., Oh, H. M., Park, N. S., Cho, C. H., Lee, B. D., Lee, H. S., Lee, S. K., 2011, Effect of Yukmijiohwangtang meal silage on the performance of Hanwoo steer, CNU. J. Agri. Sci., 38, 263-268.
  5. Chaney, A. L., Marbach, E. P., 1962, Modified reagents for determination of urea and ammonia, Clim. Chem., 8, 130-132. https://doi.org/10.1093/clinchem/8.2.130
  6. Ciesla, W. M., 2002, Non-wood forest products from temperate broad-leaved trees, Food Agric Organ, UN, Rome, Italy.
  7. De Vasconcelos, M. C. B. M., Bennett, R. N., Rosa, E. A. S., Ferreira-Cardoso, J. V., 2010, Composition of European chestnut (Castanea sativa Mill.) and association with health effects: fresh and processed products, J. Sco. Food Agric., 90, 1578-1589. https://doi.org/10.1002/jsfa.4016
  8. Demeyer, D. I., 1981, Rumen microbes and digestion of plant cell walls, Agric. Environ., 6, 294-337.
  9. FAOSTAT, Food and Agriculture Organization of the United States, 2010, Available: http://faostat.fao.org/site/339/default.aspx.
  10. Ghanem, N. B., Yusef, H. H., Mahrouse, H. K., 2000, Production of Aspergillus terreus xylanase in solid-state cultures: application of the Plackett-Burmann experimental design to evaluate nutritional requirements, Bioresour. Technol., 73, 113-121. https://doi.org/10.1016/S0960-8524(99)00155-8
  11. Golueke, C. G., Diaz, I. F., 1991, Inoculants and enzymes. In: The staff of Biocycle J. Waste Recycling, Editorm The Biocycle Guide to the Art and Science of Composting, The JG Press, Inc., Emmaus, Pensylvania, USA.
  12. Jeon, B. G., 1998, A Study on the production of chestnut powder in the inner shell (endo crap) of a chestnut from its treatment plant, J. Kor. Solid Wastes Eng., 15, 57-65.
  13. Joo, Y. H., Jeong, H. H., Kim, D. H., Lee, H. J., Lee, S. S., Kim, S. B., Kim, S. C., 2017, Effects of replacing mushroom by-product with tofu by-product on the chemical composition, microbes, and rumen fermentation indices of fermented diets, J. Envir. Sci. Inter., 26, 651-659. https://doi.org/10.5322/JESI.2017.26.5.651
  14. Jouany, J. P., Morgavi, D. P., 2007, Use of 'natural' products as alternatives to antibiotic feed additives in ruminant production. Animal, 1, 1443-1466. https://doi.org/10.1017/S1751731107000742
  15. Kim, D. H., Joo, Y. H., Lee, H. J., Lee, S. S., Paradhipta, H. V. D., Choi, N. J., Kim, S. C., 2018, Effects of inoculant application level on chemical compositions of fermented chestnut meal and its rumen fermentation indices, J. Envir. Sci. Inter., 27, 333-340. https://doi.org/10.5322/JESI.2018.27.5.333
  16. Moon, G. B., Kim, S. B., Cha, S. W., Lee, B. D., Lee, S. K. M., 2007, Improvement of the quality of herbal medicine meal (Ojeoksan) silage by molasses supplementation, Kor. J. Agri. Sci., 34, 77-84.
  17. Muck, R. E., Dickerson, J. T., 1988, Storage temperature effects on proteolysis in alfalfa silage, Trans. ASAE, 31, 1005-1009. https://doi.org/10.13031/2013.30813
  18. Mueller-Harvey, I., 2006, Unravelling the conundrum of tannins in animal nutrition and health, J. Sci. Food Agric., 86, 2010-2037. https://doi.org/10.1002/jsfa.2577
  19. SAS, 2004, SAS User's Guide. Statistical Analysis System Institute, Inc., Cary, N. C.
  20. Shin, H. T., Keum, D. H., Lee, H. W., Rhee, D. K., Hwnag, B. S., Lee, L. H., 2001, Screenging of yeasts for the development of direct-fed microbials, Kor. J. Anim. Sci. Technol., 43, 721-726.
  21. Statistics Korea, 2015, Livestock production cost survey.
  22. Stronach, S. M., Rudd, T., Lester, J. N., 1986, Anaerobic digestion process in industrial waste water treatment, Springe-verlag, Berlin Heidelberg.
  23. Van Soest, P. J., Robertson, J. B., Lewis, B. A., 1991, Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition, J. Dairy Sci., 74, 3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  24. Fuller, R., 1989, Probiotics in man and animals, A Revies. J. Appl. Bacteriol., 66, 369-377.