DOI QR코드

DOI QR Code

Establishment and validation of an analytical method for quality control of health functional foods derived from Agastache rugosa

  • Received : 2019.04.04
  • Accepted : 2019.05.31
  • Published : 2019.06.25

Abstract

Agastache rugosa, known as Korean mint, is a medicinal plant with many beneficial health effects. In this study, a simple and reliable HPLC-UV method was proposed for the quantification of rosmarinic acid (RA) in the aqueous extracts of A. rugosa. RA was selected as a quantification marker due to its easiness in procurement and analysis. The developed method involved chromatographic separation on a $C_{18}$ column ($250{\times}4.6mm$, $5{\mu}m$) at room temperature. The mobile phase consisted of water and acetonitrile both containing 2 % acetic acid and was run at a flow rate of $1mL\;min^{-1}$. The method was validated for specificity, linearity, precision, and accuracy. It was specific to RA and linear in the range of $50-300{\mu}g\;mL^{-1}$ ($r^2=0.9994$). Intra-day, inter-day, and inter-analyst precisions were ${\leq}0.91%\;RSD$, ${\leq}1.40%\;RSD$, and 1.94 % RSD, respectively. Accuracy was 93.3-95.9 % (${\leq}1.21%\;RSD$). The method could be applied to three batches of bulk samples and three batches of lab scale samples, which were found to be $0.64({\pm}0.04)mg\;g^{-1}$ and $0.48({\pm}0.02)mg\;g^{-1}$ for the dried raw materials of A. rugosa. The results show that the proposed method can be used as a readily applicable method for QC of health functional foods containing the aqueous extracts of A. rugosa.

Keywords

Agastache rugosa;rosmarinic acid;health functional food;quality control

BGHHBN_2019_v32n3_96_f0001.png 이미지

Fig. 1. UHPLC-QTOF/MS spectra of (a) RA standard in methanol (100 μg mL−1), (b) non-spiked AE sample, and (c) AE sample spiked with RA at 100 μg mL−1.

BGHHBN_2019_v32n3_96_f0002.png 이미지

Fig. 2. HPLC-UV chromatograms of (a) methanol, (b) RA standard in methanol (100 μg mL−1), (c) non-spiked AE sample, and (d) AE sample spiked with RA at 100 μg mL−1. Peak ID: 1, RA.

BGHHBN_2019_v32n3_96_f0003.png 이미지

Fig. 3. HPLC-PDA spectra of (a) RA standard in methanol (100 μg mL−1), (b) non-spiked AE sample, (c) AE sample spiked with RA standard at 100 μg mL−1.

BGHHBN_2019_v32n3_96_f0004.png 이미지

Fig. 4. An HPLC chromatogram of the AE sample prepared in lab scale. Peak ID: 1, RA.

Table 1. Linearity of the established method (n = 3)

BGHHBN_2019_v32n3_96_t0001.png 이미지

Table 2. Intra- and inter-day precisions of the proposed method

BGHHBN_2019_v32n3_96_t0002.png 이미지

Table 3. Accuracy of the proposed method (n = 5)

BGHHBN_2019_v32n3_96_t0003.png 이미지

Acknowledgement

Supported by : Korea Small and Medium Business Administration (SMBA)

References

  1. Y. B. Kim, J. K. Kim, M. R. Uddin, H. Xu, W. T. Park, P. A. Tuan, X. Li, E. Chung, J.-H. Lee, and S. U. Park, PLoS One, 8(5), e64199 (2013). https://doi.org/10.1371/journal.pone.0064199
  2. H. Gong, X. Zhou, M. Zhu, X. Ma, X. Zhang, and S. Tian, J. Essent. Oil. Bear. Pl., 15(4), 534-538 (2012). https://doi.org/10.1080/0972060X.2012.10644084
  3. Y. Oh, H.-W. Lim, Y.-H. Huang, H.-S. Kwon, C. D. Jin, K. Kim, and C.-J. Lim, J. Photochem. Photobiol. B: Biol., 163, 170-176 (2016). https://doi.org/10.1016/j.jphotobiol.2016.08.026
  4. S. Shin and C. A. Kang, Lett. Appl. Microbiol., 36(2), 111-115 (2003). https://doi.org/10.1046/j.1472-765X.2003.01271.x
  5. S. Shin, Arch. Pharmacal Res., 27(3), 295-299 (2004). https://doi.org/10.1007/BF02980063
  6. J. Kim, J. Plant. Biol., 51(4), 276-283 (2008). https://doi.org/10.1007/BF03036127
  7. G. Haiyan, H. Lijuan, L. Shaoyu, Z. Chen, and M. A. Ashraf, Saudi. J. Biol. Sci., 23(4), 524-530 (2016). https://doi.org/10.1016/j.sjbs.2016.02.020
  8. K. J. Park, S. Yang, Y. A. Eun, S. Y. Kim, H. H. Lee, and H. Kang, Pharm. Biol., 40(3), 189-195 (2002). https://doi.org/10.1076/phbi.40.3.189.5824
  9. H. K. Kim, H.-K. Lee, C.-G. Shin, and H. Huh, Arch. Pharmacal Res., 22(5), 520-523 (1999). https://doi.org/10.1007/BF02979163
  10. P. Cao, P. Xie, X. Wang, J. Wang, J. Wei, and W.-y. Kang, BMC Complement. Altern. Med., 17(1), 93 (2017). https://doi.org/10.1186/s12906-017-1592-8
  11. K. T. Desta, G. S. Kim, Y. H. Kim, W. S. Lee, S. J. Lee, J. S. Jin, A. Abd El-Aty, H. C. Shin, J. H. Shim, and S. C. Shin, Biomed. Chromatogr., 30(2), 225-231 (2016). https://doi.org/10.1002/bmc.3539
  12. J.-J. Hong, J.-H. Choi, S.-R. Oh, H.-K. Lee, J.-H. Park, K.-Y. Lee, J.-J. Kim, T.-S. Jeong, and G. T. Oh, FEBS Lett., 495(3), 142-147 (2001). https://doi.org/10.1016/S0014-5793(01)02379-1
  13. H. Q. Li, Q. Z. Liu, Z. L. Liu, S. S. Du, and Z. W. Deng, Molecules, 18(4), 4170-4180 (2013). https://doi.org/10.3390/molecules18044170
  14. I. A. S. V. Packiavathy, P. Agilandeswari, K. S. Musthafa, S. K. Pandian, and A. V. Ravi, Food Res. Int., 45(1), 85-92 (2012). https://doi.org/10.1016/j.foodres.2011.10.022
  15. G. Ruberto and M. T. Baratta, Food Chem., 69(2), 167-174 (2000). https://doi.org/10.1016/S0308-8146(99)00247-2
  16. K. P. Devi, S. A. Nisha, R. Sakthivel, and S. K. Pandian, J. Ethnopharmacol., 130(1), 107-115 (2010). https://doi.org/10.1016/j.jep.2010.04.025
  17. S. Zielinska and A. Matkowski, Phytochem. Rev., 13(2), 391-416 (2014). https://doi.org/10.1007/s11101-014-9349-1
  18. T. Hamaguchi, K. Ono, A. Murase, and M. Yamada, Am. J. Pathol., 175(6), 2557-2565 (2009). https://doi.org/10.2353/ajpath.2009.090417
  19. V. Swarup, J. Ghosh, S. Ghosh, A. Saxena, and A. Basu, Antimicrob. Agents Chemother., 51(9), 3367 (2007). https://doi.org/10.1128/AAC.00041-07
  20. J. Lee, E. Jung, Y. Kim, J. Lee, J. Park, S. Hong, C. G. Hyun, D. Park, and Y. S. Kim, Br. J. Pharmacol., 148(3), 366-375 (2006). https://doi.org/10.1038/sj.bjp.0706728
  21. O. Hernandez-Abreu, L. Duran-Gomez, R. Best-Brown, R. Villalobos-Molina, J. Rivera-Leyva, and S. Estrada-Soto, J. Ethnopharmacol., 138(2), 487-491 (2011). https://doi.org/10.1016/j.jep.2011.09.041
  22. O. Hernandez-Abreu, M. Torres-Piedra, S. Garcia-Jimenez, M. Ibarra-Barajas, R. Villalobos-Molina, S. Montes, D. Rembao, and S. Estrada-Soto, J. Ethnopharmacol., 146(1), 187-191 (2013). https://doi.org/10.1016/j.jep.2012.12.029
  23. S. Li, Q. Han, C. Qiao, J. Song, C. L. Cheng, and H. Xu, Chin. Med., 3(1), 7 (2008). https://doi.org/10.1186/1749-8546-3-7
  24. Y. Jin, J. Zhao, K. M. Jeong, D. E. Yoo, S. Y. Han, S.-Y. Choi, D.-H. Ko, H.-j. Kim, N.-H. Sung, and J. Lee, Arch. Pharmacal Res., 40(1), 49-56 (2017). https://doi.org/10.1007/s12272-016-0853-2
  25. H. M. Oh, Y. J. Kang, Y. S. Lee, M. K. Park, S. H. Kim, H. J. Kim, H. G. Seo, J. H. Lee, and K. C. Chang, J. Ethnopharmacol., 103(2), 229-235 (2006). https://doi.org/10.1016/j.jep.2005.08.030
  26. N. Erkan, G. Ayranci, and E. Ayranci, Food Chem., 110(1), 76-82 (2008). https://doi.org/10.1016/j.foodchem.2008.01.058
  27. H. P. Bais, T. S. Walker, H. P. Schweizer, and J. A. Vivanco, Plant. Physiol. Bioch., 40(11), 983-995 (2002). https://doi.org/10.1016/S0981-9428(02)01460-2
  28. Y. Jin, J. Zhao, E. M. Kim, K. H. Kim, S. Kang, H. Lee, and J. Lee, Molecules, 24(9). pii: E1735 (2019).