DOI QR코드

DOI QR Code

Validation of an analytical method for cyanide determination in blood, urine, lung, and skin tissues of rats using gas chromatography mass spectrometry (GC-MS)

  • Shin, Min-Chul (Environmental Chemistry Research Group, Korea Institute of Toxicology) ;
  • Kwon, Young Sang (Environmental Chemistry Research Group, Korea Institute of Toxicology) ;
  • Kim, Jong-Hwan (Environmental Chemistry Research Group, Korea Institute of Toxicology) ;
  • Hwang, Kyunghwa (Analytical Research Group, Korea Institute of Toxicology) ;
  • Seo, Jong-Su (Environmental Chemistry Research Group, Korea Institute of Toxicology)
  • Received : 2019.04.03
  • Accepted : 2019.05.09
  • Published : 2019.06.25

Abstract

This study was conducted to establish the analytical method for the determination of cyanide in blood, urine, lung and skin tissues in rats. In order to detect or quantify the sodium cyanide in above biological matrixes, it was derivatized to Pentafluorobenzyl cyanide (PFB-CN) using pentafluorobenzyl bromide (PFB-Br) and then reaction substance was analyzed using gas chromatography mass spectrometer (GC/MS)-SIM (selected ion monitoring) mode. The analytical method for cyanide determination was validated with respect to parameters such as selectivity, system suitability, linearity, accuracy and precision. No interference peak was observed for the determination of cyanide in blank samples, zero samples and lower limit of quantification (LLOQ) samples. The lowest limit detection (LOD) for cyanide was $10{\mu}M$. The linear dynamic range was from 10 to $200{\mu}M$ for cyanide with correlation coefficients higher than 0.99. For quality control samples at four different concentrations including LLOQ that were analyzed in quintuplicate, on six separate occasions, the accuracy and precision range from -14.1 % to 14.5% and 2.7 % to 18.3 %, respectively. The GC/MS-based method of analysis established in this study could be applied to the toxicokinetic study of cyanide on biological matrix substrates such as blood, urine, lung and skin tissues.

Keywords

Cyanide;Sodium cyanide;Method validation;GC/MS

BGHHBN_2019_v32n3_88_f0001.png 이미지

Fig. 1. Chemical structures of before and after derivatization.

BGHHBN_2019_v32n3_88_f0002.png 이미지

Fig. 2. Representative blank chromatogram of sodium cyanide in rat (A) blood, (B) urine, (C) lung and (D) skin tissue.

BGHHBN_2019_v32n3_88_f0003.png 이미지

Fig. 3. Representative LLOQ chromatogram of sodium cyanide in rat (A) blood, (B) urine, (C) lung and (D) skin tissue.

BGHHBN_2019_v32n3_88_f0004.png 이미지

Fig. 4. Calibration of sodium cyanide in rat (A) blood, (B) urine, (C) lung and (D) skin tissue.

Table 1. GC/MS operating conditions and parameters

BGHHBN_2019_v32n3_88_t0001.png 이미지

Table 2. System suitability of sodium cyanide in blood, urine, lung and skin tissues in rats

BGHHBN_2019_v32n3_88_t0002.png 이미지

Table 3. Linearity of calibration curves of sodium cyanide in blood, urine, lung and skin tissues in rats

BGHHBN_2019_v32n3_88_t0003.png 이미지

Table 4. Accuracy and precision of sodium cyanide in blood, urine, lung and skin tissues in rats

BGHHBN_2019_v32n3_88_t0004.png 이미지

Acknowledgement

Supported by : Korea Ministry of Environment (MOE)

References

  1. G. Liu, J. Liu, K. Hara, Y. Wang, Y. Yu, L. Gao, and L. Li, J. Chromatography B, 877, 3054-3058 (2009). https://doi.org/10.1016/j.jchromb.2009.07.029
  2. S. M. Lee and J. S. Kim, J. Korean Med. Assoc., 56(12), 1076-1083 (2013). https://doi.org/10.5124/jkma.2013.56.12.1076
  3. S. W. Sauer and M. E. Keim, Ann. Emerg. Med., 37, 635-641 (2001). https://doi.org/10.1067/mem.2001.114315
  4. R. K. Bhandari, R. P. Oda, I. Petrikovics, D. E. Thompson, M. Brenner, S. B. Mahon, V. S. Bebarta, G. A. Rockwood, and B. A. Logue, J. Anal. Toxicol., 38(4), 218-225 (2014). https://doi.org/10.1093/jat/bku020
  5. K. Minakata, H. Nozawa, K. Gonmori, I. Yamagishi, M. Suzuki, K. Hasegawa, K. Watanabe, and O. Suzuki, Anal. Bioanal. Chem., 400(7), 1945-1951 (2011). https://doi.org/10.1007/s00216-011-4824-7
  6. T. T. Chistison and J. S. Rohrer, J. Chromatography A, 1155, 31-39 (2007). https://doi.org/10.1016/j.chroma.2007.02.083
  7. A. Tung, J. Lynch, and W. A. McdDade, J. Moss, Anesth. Analg., 85, 1045 (1997). https://doi.org/10.1213/00000539-199711000-00015
  8. A. M. Calafat and S. B. Stanfill, J. Chromatography B, 772, 131-137 (2002). https://doi.org/10.1016/S1570-0232(02)00067-3
  9. S. Tsukamoto, T. Kanegae, Y. Matsumura, S. Uchigasaki, M. Kitazawa, T. Muto, S. Chiba, S. Oshida, T. Nagoya, and M. Shimamura, Jpn. J. Legal. Med., 48, 336-342 (1994).
  10. S. H. Chen, S. M. Wu, H. S. Kou, and H. L. Wu, J. Anal. Toxicol., 18, 81-85 (1994). https://doi.org/10.1093/jat/18.2.81
  11. S. Kage, T. Nagata, and K. Kudo, J. Chromatography B, 675, 27-32 (1996). https://doi.org/10.1016/0378-4347(95)00344-4
  12. B. D. Paul and M. L. Smith, J. Anal. Toxicol., 30, 511-515 (2006). https://doi.org/10.1093/jat/30.8.511
  13. R. K. Bhandari, R. P. Oda, S. L. Youso, I. Petrikovics, V. S. Bebarta, G. A. Rockwood, and B. A. Logue, Anal. Bioanal. Chem., 404, 2287-2294 (2012). https://doi.org/10.1007/s00216-012-6360-5
  14. A. Tracqui, J. S. Raul, A. Geraut, L. Berthelon, and B. Ludes, J. Anal. Toxicol., 26, 144-148 (2002). https://doi.org/10.1093/jat/26.3.144
  15. D. Tsikas, J. Chromatography B, 1043, 187-201 (2017). https://doi.org/10.1016/j.jchromb.2016.08.015
  16. J. B. Lee, S. K. Shon, S. H. Woo, S. Y. Park, J. H. Hwang, O. S. Kwon, N. Y. Kim, and K. J. Paeng, Anal. Sci. Technol., 29(2), 73-78 (2016). https://doi.org/10.5806/AST.2016.29.2.73
  17. Guideline for Industry on Bioanalytical Method Validation, FDA/CDER, May 2018.
  18. Guideline on Bioanalytical Method Validation, EMA, Jul, 2011.