DOI QR코드

DOI QR Code

Characterization of carbon black nanoparticles using asymmetrical flow field-flow fractionation (AsFlFFF)

  • Received : 2018.11.30
  • Accepted : 2019.05.07
  • Published : 2019.06.25

Abstract

High viscosity carbon black dispersions are used in various industrial fields such as color cosmetics, rubber, tire, plastic and color filter ink. However, carbon black particles are unstable to heat due to inherent characteristics, and it is very difficult to keep the quality of the product constant due to agglomeration of particles. In general, particle size analysis is performed by dynamic light scattering (DLS) during the dispersion process in order to select the optimum dispersant in the carbon black dispersion process. However, the existing low viscosity analysis provides reproducible particle distribution analysis results, but it is difficult to select the optimum dispersant because it is difficult to analyze the reproducible particle distribution at high viscosity. In this study, dynamic light scattering (DLS) and asymmetrical flow field-flow fractionation (AsFlFFF) analysis methods were compared for reproducible particle size analysis of high viscosity carbon black. First, the stability of carbon black dispersion was investigated by particle size analysis by DLS and AsFlFFF according to milling time, and the validity of analytical method for the selection of the optimum dispersant useful for carbon black dispersion was confirmed. The correlation between color and particle size of particles in high viscosity carbon black dispersion was investigated by using colorimeter. The particle size distribution from AsFlFFF was consistent with the colorimetric results. As a result, the correlation between AsFlFFF and colorimetric results confirmed the possibility of a strong analytical method for determining the appropriate dispersant and milling time in high viscosity carbon black dispersions. In addition, for nanoparticles with relatively broad particle size distributions such as carbon black, AsFlFFF has been found to provide a more accurate particle size distribution than DLS. This is because AsFlFFF, unlike DLS, can analyze each fraction by separating particles by size.

Keywords

High Viscosity;Carbon black (CB);Asymmetrical flow field-flow fractionation (AsFlFFF);Dynamic light scattering (DLS);Size distribution

BGHHBN_2019_v32n3_77_f0001.png 이미지

Fig. 1. Three stages of pigment dispersion.

BGHHBN_2019_v32n3_77_f0002.png 이미지

Fig. 2. Three-component system of carbon black dispersion.

BGHHBN_2019_v32n3_77_f0003.png 이미지

Fig. 3. Structure of synthesized SMA dispersant. (a) SMA1000, (b) SMA 2000, (c) SMA 3000.

BGHHBN_2019_v32n3_77_f0004.png 이미지

Fig. 4. The pH change of carbon black dispersion prepared by using SMA 1000 according to milling time (1~3 hr) at 60 ℃, 11 days (a), viscosity (b), conductivity (c), particle size (d).

BGHHBN_2019_v32n3_77_f0006.png 이미지

Fig. 6. The pH change of carbon black dispersion prepared by using SMA 3000 according to milling time (1~3 hr) at 60 ℃, 11 days (a), viscosity (b), conductivity (c), particle size (d).

BGHHBN_2019_v32n3_77_f0007.png 이미지

Fig. 7. SEM image of carbon black particles according to dispersant and milling time (X 100,000). (a) SMA 1000, milling 1 hr, (b) SMA 1000, milling 2 hr, (c) SMA 1000, milling 3 hr, (d) SMA 2000, milling 1 hr, (e) SMA 2000, milling 2 hr, (f) SMA 2000, milling 3 hr, (g) SMA 3000, milling 1 hr, (h) SMA 3000, milling 2 hr, (i) SMA 3000, milling 3 hr.

BGHHBN_2019_v32n3_77_f0008.png 이미지

Fig. 8. DLS particle size analysis of carbon black suspension according to milling time Milling. SMA 1000 (a), SMA 2000 (b), SMA 3000 (c).

BGHHBN_2019_v32n3_77_f0009.png 이미지

Fig. 9. AF4 fractograms of carbon black suspension according to milling time. SMA 1000 (a), SMA 2000 (b), SMA 3000 (c). The AF4 channel flow rate was 0.3 mL/min and the cross flow rates was 0.3 mL/min, and the carrier liquid was water containing 0.1% FL-70 and 0.02% NaN3.

BGHHBN_2019_v32n3_77_f0010.png 이미지

Fig. 5. The pH change of carbon black dispersion prepared by using SMA 2000 according to milling time (1~3 hr) at 60 ℃, 11days (a), viscosity (b), conductivity (c), particle size (d).

Table 1. The storage stability of carbon black dispersion prepared by using SMA 1000 according to milling time (1~3 hr) at 60 ℃, 11 days

BGHHBN_2019_v32n3_77_t0002.png 이미지

Table 2. The storage stability of carbon black dispersion prepared by using SMA 2000 according to milling time (1~3 hr) at 60 ℃, 11 days

BGHHBN_2019_v32n3_77_t0003.png 이미지

Table 3. The storage stability of carbon black dispersion prepared by using SMA 3000 according to milling time (1~3 hr) at 60 ℃, 11 days

BGHHBN_2019_v32n3_77_t0004.png 이미지

Table 4. DLS particle size analysis of carbon black suspensions

BGHHBN_2019_v32n3_77_t0005.png 이미지

Table 5. AF4 particle size analysis of carbon black suspensions

BGHHBN_2019_v32n3_77_t0006.png 이미지

Table 6. Colorimetric results of carbon black suspensions prepared using SMA 2000

BGHHBN_2019_v32n3_77_t0007.png 이미지

Table 7. Colorimetric results of carbon black suspensions prepared using SMA 3000

BGHHBN_2019_v32n3_77_t0008.png 이미지

Acknowledgement

Supported by : Korea Environment Industry & Technology Institute (KEITI)

References

  1. B. B. Boonstra, and A. I. Medalia, Rubber Chemistry and Technology, 36(1), 115-142 (1963). https://doi.org/10.5254/1.3539530
  2. A. I. Medalia, Rubber Chemistry and Technology, 59(3), 432-454 (1986). https://doi.org/10.5254/1.3538209
  3. E. Auer, A. Freund, J. Pietsch, and T. Tacke, Appl. Catal. A Gen., 173(2), 259-271 (1998). https://doi.org/10.1016/S0926-860X(98)00184-7
  4. Y. Lin, T. W. Smith, and P. Alexandridis, Langmuir, 18(16), 6147-6158 (2002). https://doi.org/10.1021/la011671t
  5. K. Loganathan, D. Bose, and D. Weinkauf, Int. J. Hydrogen Energy, 39(28), 15766-15771 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.125
  6. S. M. Iveson, J. D. Litster, K. Hapgood, and B. J. Ennis, Powder Technol., 117(1-2), 3-39 (2001). https://doi.org/10.1016/S0032-5910(01)00313-8
  7. F. Tiarks, K. Landfester, and M. Antonietti, Macromol. Chem. Phys., 202(1), 51-60 (2001). https://doi.org/10.1002/1521-3935(20010101)202:1<51::AID-MACP51>3.0.CO;2-J
  8. S. Lee, C. H. Eum, and W. J. Kim, Bull. Korean Chem. Soc., 60(4), 286-291 (2016). https://doi.org/10.5012/jkcs.2016.60.4.286
  9. P. A. Hartley and G. D. Parfitt, Langmuir, 1(6), 651-657 (1985). https://doi.org/10.1021/la00066a003
  10. M. Hermansson, Colloids Surf. B Biointerfaces, 14(1-4), 105-119 (1999).
  11. R. J. Pugh, T. Matsunaga, and F. M. Fowkes, Colloids Surf., 7(3), 183-207 (1983). https://doi.org/10.1016/0166-6622(83)80046-8
  12. J. A. Belmont, J. E. Johnson, and C. E. Adams, US Patent number 5,571,311 (1996).
  13. C. E. Adams and J. A. Belmont, US patent number 5,895,522(1999).
  14. R. S. Whitehouse, US Patent number 5,872,177(1999).
  15. C. F. Lee, C. C. Yang, L. Y. Wang, and W. Y. Chiu, Polym., 46(15), 5514-5523 (2005). https://doi.org/10.1016/j.polymer.2005.04.053
  16. E. M. Dannenberg, Rubber Chemistry and Technology, 25(4), 843-857 (1952). https://doi.org/10.5254/1.3543445
  17. A. A. Tracton, CRC Press, 1st Edition, 528 (2006).
  18. T. Oyanagi and K. Nakano, US Patent number 7,763,108 (2010).
  19. W. Kim, J. Bae, C. H. Eum, J. Jung, and S. Lee, Microchem. J., 142, 167-174 (2018).
  20. J. Bae, J. Jung, S. Lee, and W. Kim, J. Korean Oil. Chemists' Soc, 34(2), 357-366 (2017).
  21. T. Shibata, US Patent number 6,374,244 (2002).
  22. J. Bae, W. Kim, K. Rah, E. C. Jung, and S. Lee, Microchem. J., 104, 44-48 (2012). https://doi.org/10.1016/j.microc.2012.04.007
  23. H. Dou, E. C. Jung, and S. Lee, J. Chromatogr. A, 1393, 115-121 (2015). https://doi.org/10.1016/j.chroma.2015.03.025
  24. B. Wittgren, K. G. Wahlund, H. Derand, and B. Wesslen, Macromolecules, 29(1), 268-276 (1996). https://doi.org/10.1021/ma950837s
  25. J. C. Giddings, J. Sep. Sci., 1(1), 123-125 (1966).
  26. K. G. Wahlund, and J. C. Giddings, Anal. Chem., 59(9), 1332-1339 (1987). https://doi.org/10.1021/ac00136a016
  27. A. Litzen, and K. G. Wahlund, Anal. Chem., 63(10), 1001-1007 (1991). https://doi.org/10.1021/ac00010a013
  28. A. Litzen, Anal. Chem., 65(4), 461-470 (1993). https://doi.org/10.1021/ac00052a025
  29. D. Braun, R. Sauerwein, and G. P. Hellmann, Macromol. Symp., 163(1), 59-66 (2001). https://doi.org/10.1002/1521-3900(200101)163:1<59::AID-MASY59>3.0.CO;2-3