DOI QR코드

DOI QR Code

RIEMANNIAN MANIFOLDS WITH A SEMI-SYMMETRIC METRIC P-CONNECTION

Chaubey, Sudhakar Kr;Lee, Jae Won;Yadav, Sunil Kr

  • Received : 2018.09.21
  • Accepted : 2019.03.04
  • Published : 2019.07.01

Abstract

We define a class of semi-symmetric metric connection on a Riemannian manifold for which the conformal, the projective, the concircular, the quasi conformal and the m-projective curvature tensors are invariant. We also study the properties of semisymmetric, Ricci semisymmetric and Eisenhart problems for solving second order parallel symmetric and skew-symmetric tensors on the Riemannian manifolds equipped with a semi-symmetric metric P-connection.

Keywords

Riemannian manifolds;second order parallel tensors;Ricci solitons;symmetric spaces;semi-symmetric metric connection;different curvature tensors

References

  1. B. Barua and A. Kr. Ray, Some properties of semisymmetric metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 16 (1985), no. 7, 736-740.
  2. C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 361-368.
  3. S. K. Chaubey, Certain results on N(k)-quasi Einstein manifolds, Afr. Mat. (2018); https://doi.org/10.1007/s13370-018-0631-z.
  4. S. K. Chaubey and A. Kumar, Semi-symmetric metric T-connection in an almost contact metric manifold, Int. Math. Forum 5 (2010), no. 21-24, 1121-1129.
  5. S. K. Chaubey and R. H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differ. Geom. Dyn. Syst. 12 (2010), 52-60.
  6. S. K. Chaubey and R. H. Ojha, On a semi-symmetric non-metric connection, Filomat 26 (2012), no. 2, 269- 275. https://doi.org/10.2298/FIL1202269C
  7. S. K. Chaubey and A. A. Shaikh, On 3-dimensional Lorentzian concircular structure manifolds, Commun. Korean Math. Soc. 34 (2019), no. 1, 303-319.
  8. S. K. Chaubey and S. K. Yadav, Study of Kenmotsu manifolds with semi-symmetric metric connection, Universal J. Math. Appl. 1 (2018), no. 2, 89-97.
  9. M. Crasmareanu, Parallel tensors and Ricci solitons in N(k)-quasi Einstein manifolds, Indian J. Pure Appl. Math. 43 (2012), no. 4, 359-369. https://doi.org/10.1007/s13226-012-0022-3
  10. U. C. De and J. Sengupta, On a type of semi-symmetric metric connection on an almost contact metric manifold, Facta Univ. Ser. Math. Inform. 16 (2001), 87-96.
  11. L. P. Eisenhart, Symmetric tensors of the second order whose first covariant derivatives are zero, Trans. Amer. Math. Soc. 25 (1923), no. 2, 297-306. https://doi.org/10.1090/S0002-9947-1923-1501245-6
  12. A. Friedmann and J. A. Schouten, Uber die Geometrie der halbsymmetrischen Ubertragungen, Math. Z. 21 (1924), no. 1, 211-223. https://doi.org/10.1007/BF01187468
  13. R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988.
  14. H. A. Hayden, Sub-spaces of a space with torsion, Proc. London Math. Soc. (2) 34 (1932), no. 1, 27-50.
  15. D. H. Jin, Half lightlike submanifolds of a semi-Riemannian space form with a semisymmetric non-metric connection, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 21 (2014), no. 1, 39-50.
  16. D. H. Jin and J. W. Lee, Einstein half lightlike submanifolds of a Lorentzian space form with a semi-symmetric metric connection, Quaest. Math. 37 (2014), no. 4, 485-505. https://doi.org/10.2989/16073606.2014.981686
  17. H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Ann. of Math. (2) 27 (1925), no. 2, 91-98. https://doi.org/10.2307/1967964
  18. R. S. Mishra and S. N. Pandey, Semi-symmetric metric connections in an almost contact manifold, Indian J. Pure Appl. Math. 9 (1978), no. 6, 570-580.
  19. C. Murathan and C. Ozgur, Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions, Proc. Est. Acad. Sci. 57 (2008), no. 4, 210-216. https://doi.org/10.3176/proc.2008.4.02
  20. E. Pak, On the pseudo-Riemannian spaces, J. Korean Math. Soc. 6 (1969), 23-31.
  21. G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic significance. II, Yokohama Math. J. 19 (1971), no. 2, 97-103.
  22. G. P. Pokhariyal, S. Yadav, and S. K. Chaubey, Ricci solitons on trans-Sasakian manifolds, Differ. Geom. Dyn. Syst. 20 (2018), 138-158.
  23. R. Sharma, Second order parallel tensor in real and complex space forms, Internat. J. Math. Math. Sci. 12 (1989), no. 4, 787-790.
  24. R. Sharma, Second order parallel tensors on contact manifolds, Algebras Groups Geom. 7 (1990), no. 2, 145-152.
  25. R. Sharma, Second order parallel tensors on contact manifolds. II, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 6, 259-264.
  26. R. Sharma, On the curvature of contact metric manifolds, J. Geom. 53 (1995), no. 1-2, 179-190. https://doi.org/10.1007/BF01224050
  27. Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y )${\cdot}$R = 0. I. The local version, J. Differential Geom. 17 (1982), no. 4, 531-582 (1983).
  28. Z. I. Szabo, Structure theorems on Riemannian spaces satisfying R(X, Y )${\cdot}$R = 0. II. Global versions, Geom. Dedicata 19 (1985), no. 1, 65-108. https://doi.org/10.1007/BF00233102
  29. L. Tamassy and T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, Tensor (N.S.) 53 (1993), Commemoration Volume I, 140-148.
  30. H. Weyl, Reine Infinitesimalgeometrie, Math. Z. 2 (1918), no. 3-4, 384-411. https://doi.org/10.1007/BF01199420
  31. K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
  32. K. Yano, Concircular geometry. I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200.
  33. K. Yano and S. Bochner, Curvature and Betti Numbers, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, NJ, 1953.
  34. K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Differential Geometry 2 (1968), 161-184. https://doi.org/10.4310/jdg/1214428253
  35. F. Zengin, S. A. Demirbag, S. A. Uysal, and H. B. Yilmaz, Some vector fields on a Riemannian manifold with semi-symmetric metric connection, Bull. Iranian Math. Soc. 38 (2012), no. 2, 479-490.