Boukabache, Akram;Kechkar, Nasserdine

  • Received : 2018.09.20
  • Accepted : 2018.12.13
  • Published : 2019.07.01


In this paper, we present and analyze a cell-centered collocated finite volume scheme for incompressible flows to compute solutions simultaneous to Stokes and Darcy equations by applying a pressure jump stabilization term to avoid locking. We prove that the new stabilized FV formulation satisfies a discrete inf-sup condition and error estimates for both problems. Finally, we present some numerical examples confirming this analysis.


finite volumes;collocated discretizations;Stokes equation;Darcy equation;stabilized methods


  1. S. Badia and R. Codina, Unified stabilized finite element formulations for the Stokes and the Darcy problems, SIAM J. Numer. Anal. 47 (2009), no. 3, 1971-2000.
  2. E. Burman and P. Hansbo, Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem, Numer. Methods Partial Differential Equations 21 (2005), no. 5, 986-997.
  3. M. Cui and X. Ye, Unified analysis of finite volume methods for the Stokes equations, SIAM J. Numer. Anal. 48 (2010), no. 3, 824-839.
  4. R. Eymard, T. Gallouet, and R. Herbin, Finite volume methods, in Handbook of numerical analysis, Vol. VII, 713-1020, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000.
  5. R. Eymard, R. Herbin, and J. C. Latche, On a stabilized colocated finite volume scheme for the Stokes problem, M2AN Math. Model. Numer. Anal. 40 (2006), no. 3, 501-527.
  6. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986.
  7. M. D. Gunzburger, Finite element methods for viscous incompressible flows, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1989.
  8. R. Herbin, Analysis of cell centred finite volume methods for incompressible fluid flows, Ecole de printemps de mecanique des fluides numeriques, Roscoff, 2005.
  9. T. J. R. Hughes and L. P. Franca, A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg. 65 (1987), no. 1, 85-96.
  10. N. Kechkar and D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp. 58 (1992), no. 197, 1-10.
  11. K. A. Mardal, X.-C. Tai, and R. Winther, A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal. 40 (2002), no. 5, 1605-1631.
  12. J. Necas, Equations aux derivees partielles, presses univ, Montreal, Montreal, 1965.
  13. C. M. Xie, Y. Luo, and M. F. Feng, Analysis of a unified stabilized finite volume method for the Darcy-Stokes problem, Math. Numer. Sin. 33 (2011), no. 2, 133-144.
  14. T. Zhang, L. Mu, and J. Yuan, A posteriori error estimates of stabilized finite volume method for the Stokes equations, Math. Methods Appl. Sci. 39 (2016), no. 1, 32-43.
  15. T. Zhang and L. Tang, A stabilized finite volume method for Stokes equations using the lowest order $P_1\;-\;P_0$ element pair, Adv. Comput. Math. 41 (2015), no. 4, 781-798.