DOI QR코드

DOI QR Code

ARC SHIFT NUMBER AND REGION ARC SHIFT NUMBER FOR VIRTUAL KNOTS

Gill, Amrendra;Kaur, Kirandeep;Madeti, Prabhakar

  • Received : 2018.09.09
  • Accepted : 2019.02.07
  • Published : 2019.07.01

Abstract

In this paper, we formulate a new local move on virtual knot diagram, called arc shift move. Further, we extend it to another local move called region arc shift defined on a region of a virtual knot diagram. We establish that these arc shift and region arc shift moves are unknotting operations by showing that any virtual knot diagram can be turned into trivial knot using arc shift (region arc shift) moves. Based upon the arc shift move and region arc shift move, we define two virtual knot invariants, arc shift number and region arc shift number respectively.

Keywords

virtual knot;Gauss diagram;forbidden moves

References

  1. A. S. Crans, B. Mellor, and S. Ganzell, The forbidden number of a knot, Kyungpook Math. J. 55 (2015), no. 2, 485-506. https://doi.org/10.5666/KMJ.2015.55.2.485
  2. M. Goussarov, M. Polyak, and O. Viro, Finite-type invariants of classical and virtual knots, Topology 39 (2000), no. 5, 1045-1068. https://doi.org/10.1016/S0040-9383(99)00054-3
  3. T. Kanenobu, Forbidden moves unknot a virtual knot, J. Knot Theory Ramifications 10 (2001), no. 1, 89-96.
  4. L. H. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), no. 7, 663-690. https://doi.org/10.1006/eujc.1999.0314
  5. L. H. Kauffman, A self-linking invariant of virtual knots, Fund. Math. 184 (2004), 135-158.
  6. H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989), no. 1, 75-89. https://doi.org/10.1007/BF01443506
  7. S. Nelson, Unknotting virtual knots with Gauss diagram forbidden moves, J. Knot Theory Ramifications 10 (2001), no. 6, 931-935.
  8. M. Sakurai, An affne index polynomial invariant and the forbidden move of virtual knots, J. Knot Theory Ramifications 25 (2016), no. 7, 1650040, 13 pp.
  9. A. Shimizu, Region crossing change is an unknotting operation, J. Math. Soc. Japan 66 (2014), no. 3, 693-708. https://doi.org/10.2969/jmsj/06630693