DOI QR코드

DOI QR Code

HOMOGENEITY AND SYMMETRY ON ALMOST KENMOTSU 3-MANIFOLDS

  • Wang, Yaning
  • Received : 2018.07.15
  • Accepted : 2019.04.10
  • Published : 2019.07.01

Abstract

In this paper, we give some classifications of almost Kenmotsu 3-manifolds under homogeneity and some symmetry conditions.

Keywords

almost Kenmotsu 3-manifold;homogeneity;semi-symmetry;local ${\phi}$-symmetry;Lie group

References

  1. D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, second edition, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2010.
  2. E. Boeckx, O. Kowalski, and L. Vanhecke, Riemannian Manifolds of Conullity Two, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.
  3. W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721-734. https://doi.org/10.2307/1970165
  4. G. Calvaruso and A. Perrone, Natural almost contact structures and their 3D homogeneous models, Math. Nachr. 289 (2016), no. 11-12, 1370-1385. https://doi.org/10.1002/mana.201400315
  5. Cartan, Lecons sur la Geometrie des Espaces de Riemann, Gauthier-Villars, Paris, 1946.
  6. D. Chinea and C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36.
  7. J. T. Cho, Local symmetry on almost Kenmotsu three-manifolds, Hokkaido Math. J. 45 (2016), no. 3, 435-442.
  8. J. T. Cho and M. Kimura, Reeb flow symmetry on almost contact three-manifolds, Differential Geom. Appl. 35 (2014), suppl., 266-273.
  9. U. C. De and G. Pathak, On 3-dimensional Kenmotsu manifolds, Indian J. Pure Appl. Math. 35 (2004), no. 2, 159-165.
  10. U. C. De, A. Yildiz, and A. F. Yaliniz, Locally $\phi$-symmetric normal almost contact metric manifolds of dimension 3, Appl. Math. Lett. 22 (2009), no. 5, 723-727. https://doi.org/10.1016/j.aml.2008.08.010
  11. G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and local symmetry, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 2, 343-354.
  12. G. Dileo and A. M. Pastore, Almost Kenmotsu manifolds and nullity distributions, J. Geom. 93 (2009), no. 1-2, 46-61. https://doi.org/10.1007/s00022-009-1974-2
  13. J. Inoguchi, A note on almost contact Riemannian 3-manifolds II, Bull. Korean Math. Soc. 54 (2017), no. 1, 85-97. https://doi.org/10.4134/BKMS.b150772
  14. J. Inoguchi, Pseudo-symmetric Lie groups of dimension 3, Bull. Fac. Educ. Utsunomiya Univ. Sect. 2 No. 57 (2007), 1-5.
  15. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972), 93-103.
  16. J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293-329.
  17. A. M. Pastore and V. Saltarelli, Generalized nullity distributions on almost Kenmotsu manifolds, Int. Electron. J. Geom. 4 (2011), no. 2, 168-183.
  18. D. Perrone, Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42 (1998), no. 2, 243-256.
  19. D. Perrone, Classification of homogeneous almost cosymplectic three-manifolds, Differential Geom. Appl. 30 (2012), no. 1, 49-58.
  20. G. Pitis, Geometry of Kenmotsu Manifolds, Publishing House of Transilvania University of Brasov, Brasov, 2007.
  21. K. Sekigawa, On some 3-dimensional curvature homogeneous spaces, Tensor (N.S.) 31 (1977), no. 1, 87-97.
  22. N. S. Sinjukov, [Geodesic mappings of Riemannian spaces] (Russian), "Nauka", Moscow, 1979.
  23. H. Takagi, An example of Riemannian manifolds satisfying R(X, Y ) ${\cdot}$ R = 0 but not ${\nabla}R$ = 0, Tohoku Math. J. (2) 24 (1972), 105-108.
  24. T. Takahashi, Sasakian $\phi$-symmetric spaces, Tohoku Math. J. (2) 29 (1977), no. 1, 91-113. https://doi.org/10.2748/tmj/1178240699
  25. L. Vanhecke and D. Janssens, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27. https://doi.org/10.2996/kmj/1138036310
  26. Y. Wang, Three-dimensional locally symmetric almost Kenmotsu manifolds, Ann. Polon. Math. 116 (2016), no. 1, 79-86.
  27. Y. Wang, A class of 3-dimensional almost Kenmotsu manifolds with harmonic curvature tensors, Open Math. 14 (2016), no. 1, 977-985. https://doi.org/10.1515/math-2016-0088
  28. Y. Wang, Three-dimensional almost Kenmotsu manifolds with $\eta$-parallel Ricci tensor, J. Korean Math. Soc. 54 (2017), no. 3, 793-805. https://doi.org/10.4134/JKMS.J160252
  29. Y. Wang and X. Liu, Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions, Ann. Polon. Math. 112 (2014), no. 1, 37-46. https://doi.org/10.4064/ap112-1-3
  30. Y. Wang and X. Liu, Locally symmetric CR-integrable almost Kenmotsu manifolds, Mediterr. J. Math. 12 (2015), no. 1, 159-171. https://doi.org/10.1007/s00009-014-0388-z