DOI QR코드

DOI QR Code

A CHARACTERIZATION OF CLASS GROUPS VIA SETS OF LENGTHS

Geroldinger, Alfred;Schmid, Wolfgang Alexander

  • Received : 2018.07.12
  • Accepted : 2019.02.07
  • Published : 2019.07.01

Abstract

Let H be a Krull monoid with class group G such that every class contains a prime divisor. Then every nonunit $a{\in}H$ can be written as a finite product of irreducible elements. If $a=u_1{\cdot}\;{\ldots}\;{\cdot}u_k$ with irreducibles $u_1,{\ldots},u_k{\in}H$, then k is called the length of the factorization and the set L(a) of all possible k is the set of lengths of a. It is well-known that the system ${\mathcal{L}}(H)=\{{\mathcal{L}}(a){\mid}a{\in}H\}$ depends only on the class group G. We study the inverse question asking whether the system ${\mathcal{L}}(H)$ is characteristic for the class group. Let H' be a further Krull monoid with class group G' such that every class contains a prime divisor and suppose that ${\mathcal{L}}(H)={\mathcal{L}}(H^{\prime})$. We show that, if one of the groups G and G' is finite and has rank at most two, then G and G' are isomorphic (apart from two well-known exceptions).

Keywords

Krull monoids;class groups;arithmetical characterizations;sets of lengths;zero-sum sequences

References

  1. P. C. Baayen, ($C_2{\oplus}C_2{\oplus}C_2{\oplus}C_{2n}$)!, Math. Centrum Amsterdam Afd. Zuivere Wisk. 1969 (1969), ZW-006, 21 pp.
  2. N. R. Baeth and A. Geroldinger, Monoids of modules and arithmetic of direct-sum decompositions, Pacific J. Math. 271 (2014), no. 2, 257-319. https://doi.org/10.2140/pjm.2014.271.257
  3. N. Baeth and J. Hoffmeier, Atoms of the relative block monoid, Involve 2 (2009), no. 1, 29-36.
  4. N. R. Baeth and R. Wiegand, Factorization theory and decompositions of modules, Amer. Math. Monthly 120 (2013), no. 1, 3-34. https://doi.org/10.4169/amer.math.monthly.120.01.003
  5. P. Baginski, A. Geroldinger, D. J. Grynkiewicz, and A. Philipp, Products of two atoms in Krull monoids and arithmetical characterizations of class groups, European J. Combin. 34 (2013), no. 8, 1244-1268. https://doi.org/10.1016/j.ejc.2013.05.008
  6. S. T. Chapman, M. Fontana, A. Geroldinger, and B. Olberding, Multiplicative Ideal Theory and Factorization Theory, Springer Proceedings in Mathematics & Statistics, 170, Springer, 2016.
  7. W. Gao and A. Geroldinger, Systems of sets of lengths. II, Abh. Math. Sem. Univ. Hamburg 70 (2000), 31-49.
  8. W. Gao and A. Geroldinger, On zero-sum sequences in $\mathbb{Z}/n\mathbb{Z}\oplus\mathbb{Z}/n\mathbb{Z}$, Integers 3 (2003), A8, 45 pp.
  9. W. Gao, A. Geroldinger, and D. J. Grynkiewicz, Inverse zero-sum problems. III, Acta Arith. 141 (2010), no. 2, 103-152. https://doi.org/10.4064/aa141-2-1
  10. A. Geroldinger, Systeme von Langenmengen, Abh. Math. Sem. Univ. Hamburg 60 (1990), 115-130.
  11. A. Geroldinger, Additive group theory and non-unique factorizations, in Combinatorial number theory and additive group theory, 1-86, Adv. Courses Math. CRM Barcelona, Birkhauser Verlag, Basel, 2009.
  12. A. Geroldinger, Sets of lengths, Amer. Math. Monthly 123 (2016), no. 10, 960-988.
  13. A. Geroldinger, D. J. Grynkiewicz, and W. A. Schmid, The catenary degree of Krull monoids I, J. Theor. Nombres Bordeaux 23 (2011), no. 1, 137-169.
  14. A. Geroldinger, D. J. Grynkiewicz, and P. Yuan, On products of k atoms II, Mosc. J. Comb. Number Theory 5 (2015), no. 3, 3-59.
  15. A. Geroldinger and F. Halter-Koch, Non-unique Factorizations, Pure and AppliedMathematics (Boca Raton), 278, Chapman & Hall/CRC, Boca Raton, FL, 2006.
  16. A. Geroldinger, S. Ramacher, and A. Reinhart, On v-Marot Mori rings and C-rings, J. Korean Math. Soc. 52 (2015), no. 1, 1-21. https://doi.org/10.4134/JKMS.2015.52.1.001
  17. A. Geroldinger and I. Z. Ruzsa, Combinatorial number theory and additive group theory, Advanced Courses in Mathematics. CRM Barcelona, Birkhauser Verlag, Basel, 2009.
  18. A. Geroldinger and P. Yuan, The set of distances in Krull monoids, Bull. Lond. Math. Soc. 44 (2012), no. 6, 1203-1208. https://doi.org/10.1112/blms/bds046
  19. A. Geroldinger and Q. Zhong, The catenary degree of Krull monoids II, J. Aust. Math. Soc. 98 (2015), no. 3, 324-354. https://doi.org/10.1017/S1446788714000585
  20. A. Geroldinger and Q. Zhong, The set of minimal distances in Krull monoids, Acta Arith. 173 (2016), no. 2, 97-120.
  21. A. Geroldinger and Q. Zhong, A characterization of class groups via sets of lengths II, J. Theor. Nombres Bordeaux 29 (2017), no. 2, 327-346.
  22. D. J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics, 30, Springer, Cham, 2013.
  23. F. Halter-Koch, Factorization of algebraic integers, Grazer Math. Berichte 191 (1983).
  24. F. Halter-Koch, Relative block semigroups and their arithmetical applications, Comment. Math. Univ. Carolin. 33 (1992), no. 3, 373-381.
  25. F. Halter-Koch, Ideal Systems, Monographs and Textbooks in Pure and Applied Mathematics, 211, Marcel Dekker, Inc., New York, 1998.
  26. J. Kaczorowski, A pure arithmetical characterization for certain fields with a given class group, Colloq. Math. 45 (1981), no. 2, 327-330.
  27. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, PWN-Polish Scientific Publishers, Warsaw, 1974.
  28. C. Reiher, A proof of the theorem according to which every prime number possesses property B, PhD Thesis, Rostock, 2010 (2010).
  29. D. E. Rush, An arithmetic characterization of algebraic number fields with a given class group, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 1, 23-28.
  30. W. A. Schmid, Arithmetic of block monoids, Math. Slovaca 54 (2004), no. 5, 503-526.
  31. W. A. Schmid, Periods of sets of lengths: a quantitative result and an associated inverse problem, Colloq. Math. 113 (2008), no. 1, 33-53. https://doi.org/10.4064/cm113-1-4
  32. W. A. Schmid, Arithmetical characterization of class groups of the form $\mathbb{Z}/n\mathbb{Z}\oplus\mathbb{Z}/n\mathbb{Z}$ via the system of sets of lengths, Abh. Math. Semin. Univ. Hambg. 79 (2009), no. 1, 25-35.
  33. W. A. Schmid, Characterization of class groups of Krull monoids via their systems of sets of lengths: a status report, in Number theory and applications, 189-212, Hindustan Book Agency, New Delhi, 2009.
  34. W. A. Schmid, A realization theorem for sets of lengths, J. Number Theory 129 (2009), no. 5, 990-999. https://doi.org/10.1016/j.jnt.2008.10.019
  35. W. A. Schmid, Inverse zero-sum problems II, Acta Arith. 143 (2010), no. 4, 333-343. https://doi.org/10.4064/aa143-4-2
  36. W. A. Schmid, The inverse problem associated to the Davenport constant for $C_2{\oplus}C_2{\oplus}C_{2n}$, and applications to the arithmetical characterization of class groups, Electron. J. Combin. 18 (2011), no. 1, Paper 33, 42 pp.
  37. Q. Zhong, A characterization of finite abelian groups via sets of lengths in transfer Krull monoids, Comm. Algebra 46 (2018), no. 9, 4021-4041.
  38. Q. Zhong, Sets of minimal distances and characterizations of class groups of Krull monoids, Ramanujan J. 45 (2018), no. 3, 719-737.