Performance Improvement of Flexible Thin Film Si Solar Cells using Graphite Substrate

그라파이트 기판을 이용한 유연 박막 실리콘 태양전지 특성 향상

  • Lim, Gyeong-yeol (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Cho, Jun-sik (Photovoltaic Laboratory, Korea Institute of Energy Research) ;
  • Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University)
  • 임경열 (충남대학교 에너지과학기술대학원) ;
  • 조준식 (한국에너지기술연구원 태양광연구실) ;
  • 장효식 (충남대학교 에너지과학기술대학원)
  • Received : 2019.03.27
  • Accepted : 2019.04.24
  • Published : 2019.05.27


We investigated the characteristics of nano crystalline silicon(nc-Si) thin-film solar cells on graphite substrates. Amorphous silicon(a-Si) thin-film solar cells on graphite plates show low conversion efficiency due to high surface roughness, and many recombination by dangling bonds. In previous studies, we deposited barrier films by plasma enhanced chemical vapor deposition(PECVD) on graphite plate to reduce surface roughness and achieved ~7.8 % cell efficiency. In this study, we fabricated nc-Si thin film solar cell on graphite in order to increase the efficiency of solar cells. We achieved 8.45 % efficiency on graphite plate and applied this to nc-Si on graphite sheet for flexible solar cell applications. The characterization of the cell is performed with external quantum efficiency(EQE) and current density-voltage measurements(J-V). As a result, we obtain ~8.42 % cell efficiency in a flexible solar cell fabricated on a graphite sheet, which performance is similar to that of cells fabricated on graphite plates.



Supported by : Korea Evaluation Institute of Industrial Technology (KEIT)


  1. E. Frackowiak and F. Beguin, Carbon, 39, 937 (2001).
  2. J. Wang and S. Kaskel, J. Mater. Chem., 22, 23710 (2012).
  3. P. Simon and Y. Gogotsi, Acc. Chem. Res., 46, 1094 (2012).
  4. M. F. Bhopal, A. Rehman, D. W. Lee and S. H. Lee, J. Korean Phys. Soc., 66, 730 (2015).
  5. Z. Shi and A. Jayatissa, Materials, 11, 36 (2018).
  6. M. Czerniak-Reczulska, A. Niedzielska and A. Jedrzejczak, Adv. Mater. Sci., 15, 67 (2015).
  7. X. Li, Z. Lv and H. Zhu, Adv. Mater., 27, 6549 (2015).
  8. W. Xu, S. Choi, and M. G. Allen, in Proc. 23rd IEEE Int. Conf. MEMS, (Hong Kong, 2010), p. 1187.
  9. Y. J. Cho, D. W. Lee, J. S. Cho, and H. S. Chang (in Korean), J. Korean Inst. Electr. Electron. Mater. Eng., 29, 505 (2016).
  10. Z. E. Smith and S. Wagner, Phys. Rev. Lett., 59, 688 (1987).
  11. C. Boehme, F. Friedrich, T. Ehara and K. Lips, Thin Solid Films, 487, 132 (2005).
  12. M. Fehr, A. Schnegg, C. Teutloff, R. Bittl, O. Astakhov and F. Finger, Phys. Status Solidi A, 207, 552 (2010).
  13. N. Wyrsch, C. Droz, L. Feitknecht, P. Torres, E. Vallat- Sauvain, J. Bailat and A. Shah, J. Non-Cryst. Solids, 299, 390 (2002).
  14. Y. Yuan, W. Zhao, J. Ma, Z. Yang, W. Li and K. Zhang, Surf. Coat. Technol., 320, 362 (2017).
  15. J. S. Cho, E. S. Jang, D. Lim, J. H. Park and B. H. Choi, Sol. Energy, 159, 444 (2018).
  16. S. A. Filonovich, P. Alpuim, L. Rebouta, J. E. Bouree and Y. M. Soro, J. Non-Cryst. Solids, 354, 2376 (2008).
  17. Z. Li, X. Zhang and G. Han, Phys. Status Solidi A, 207, 144 (2010).
  18. C. H. Lee, A. Sazonov and A. Nathan, Appl. Phys. Lett., 86, 222106 (2005).