DOI QR코드

DOI QR Code

Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition

Atomic Layer Deposition의 두께 변화에 따른 NCM 양극에서의 고전압 리튬 이온 전지의 전기화학적 특성 평가

  • Im, Jinsol (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Ahn, Jinhyeok (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Kim, Jungmin (School of Chemical Engineering, Sungkyunkwan University) ;
  • Sung, Shi-Joon (Convergence Research Center for Solar Energy, DGIST) ;
  • Cho, Kuk Young (Department of Materials Science and Chemical Engineering, Hanyang University)
  • 임진솔 (한양대학교재료화학공학과) ;
  • 안진혁 (한양대학교재료화학공학과) ;
  • 김정민 (성균관대학교화학공학과) ;
  • 성시준 (DGIST 태양에너지융합연구센터) ;
  • 조국영 (한양대학교재료화학공학과)
  • Received : 2019.04.16
  • Accepted : 2019.04.30
  • Published : 2019.05.31

Abstract

High-voltage operation of the lithium ion battery is one of the advantageous approaches to obtain high energy capacity without changing the conventional cell components and structure. However, operating at harsh condition inevitably results in severe side reactions at the electrode surface and structural disintegration of active material particles. Herein we coated layers composed of $Al_2O_3$ and ZnO on the electrode based on NCM using atomic layer deposition (ALD). Thicker layers of novel Al-doped ZnO (AZO) coating compared to conventional ALD coated layers are prepared. Cathode based on NCM with the varying AZO coating thickness are fabricated and used for coin cell assembly. Effect of ALD coating thickness on the charge-discharge cycle behavior obtained at high-voltage operation was investigated.

JHHHB@_2019_v22n2_60_f0001.png 이미지

Fig. 1. (a) Schematic of ALD coating process: mainly ZnO deposition and only one layer of Al2O3 deposition. TEM image of ZnO:Al2O3 ALD coating layer on glass. (b) ZnO:Al2O3 = 5:1 (AZO6), (c) ZnO:Al2O3 = 9:1 (AZO10), (d) ZnO:Al2O3 = 19:1 (AZO20), and (e) ZnO:Al2O3 = (19:1)×2 (AZO40)

JHHHB@_2019_v22n2_60_f0002.png 이미지

Fig. 2. EDS mapping of ALD coated NCM523 at AZO20: (a) SEM image of analysis site, and mapping image of elements of (b) Al (aluminum), and (c) Zn (zinc). (d) Element intensity of Zn.

JHHHB@_2019_v22n2_60_f0003.png 이미지

Fig. 3. EDS elemental line concentration profile of ALD coated NCM523 at AZO20: (a), (b) SEM image of analysis area point, (c) intensity, and (d) atomic %.

JHHHB@_2019_v22n2_60_f0004.png 이미지

Fig. 4. Cyclic voltammetry on ALD coated cathode half cell: (a) AZO6, (b) AZO10, (c) AZO20, and (d) AZO40.

JHHHB@_2019_v22n2_60_f0005.png 이미지

Fig. 5. Electrochemical result of cells using ALD coated and non-coated cathode: cycle performance of the cell operated at the cut off voltage of 4.5 V. (a) cycle rate of 0.2 C, (b) cycle rate of 0.5 C, (c) coulombic efficiency, (d) capacity retention plot using the result of (a), and (e) rate capability.

JHHHB@_2019_v22n2_60_f0006.png 이미지

Fig. 6. Nyquist plots of coated cathode and anode full cell systems: (a) non-coated, (b) AZO6, (c) AZO10, (d) AZO20, (e) AZO40, and (f) equivalent circuit used to model the impedance spectra of cells.

Acknowledgement

Supported by : 한국에너지기술평가원 (KETEP)

References

  1. J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, and Z.X. Shen, 'Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design' Adv. Sci., 5, 1700322 (2018). https://doi.org/10.1002/advs.201700322
  2. B. Scrosati and J. Garche, 'Lithium Batteries: Status, Prospects and Future' J. Power Sources, 195, 2419-2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
  3. S. Jung, 'Mathematical Model of Lithium-Ion Batteries with Blended-Electrode System' J. Power Sources, 264, 184-194 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.072
  4. B. Reuter, 'Assessment of Sustainability Issues for the Selection of Materials and Technologies during Product Design: A Case Study of Lithium-Ion Batteries for Electric Vehicles' Int. J. Interactive Design and Manufacturing (IJIDeM), 10, 217-227 (2016). https://doi.org/10.1007/s12008-016-0329-0
  5. Y.S. Jung, A.S. Cavanagh, A.C. Dillon, M.D. Groner, S.M. George, and S.-H. Lee, 'Enhanced Stability of $LiCoO_2$ Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition' J. Electrochem. Soc., 157, A75-A81 (2010). https://doi.org/10.1149/1.3258274
  6. E. Kazyak, K.N. Wood, and N.P. Dasgupta, 'Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments' Chem. Mater., 27, 6457-6462 (2015). https://doi.org/10.1021/acs.chemmater.5b02789
  7. S.-H. Kang and M.M. Thackeray, 'Enhancing the Rate Capability of High Capacity $xLi_2MnO_3{\cdot}(1-x)LiMO_2$ (M=Mn, Ni, Co) Electrodes by $Li-Ni-PO_4$ Treatment' Electrochem. Commun., 11, 748-751 (2009). https://doi.org/10.1016/j.elecom.2009.01.025
  8. Y.-J. Kim, H. Lee, H. Noh, J. Lee, S. Kim, M.-H. Ryou, Y.M. Lee, and H.-T. Kim, 'Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic-Organic Composite Protective Layer' ACS Appl. Mater. Interfaces, 9, 6000-6006 (2017). https://doi.org/10.1021/acsami.6b14437
  9. G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, and H.-M. Cheng, 'Graphene-Wrapped $Fe_3O_4$ Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries' Chem. Mater., 22, 5306-5313 (2010). https://doi.org/10.1021/cm101532x
  10. C. Wang, L. Yin, D. Xiang, and Y. Qi, 'Uniform Carbon Layer Coated $Mn_3O_4$ Nanorod Anodes with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries' ACS Appl. Mater. Interfaces, 4, 1636-1642 (2012). https://doi.org/10.1021/am2017909
  11. F.-H. Du, B. Li, W. Fu, Y.-J. Xiong, K.-X. Wang, and J.-S. Chen, 'Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability' Adv. Mater., 26, 6145-6150 (2014). https://doi.org/10.1002/adma.201401937
  12. M.J. Lacey, F. Jeschull, K. Edstrom, and D. Brandell, 'Functional, Water-Soluble Binders for Improved Capacity and Stability of Lithium-Sulfur Batteries' J. Power Sources, 264, 8-14 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.090
  13. M.E. Donders, W.M. Arnoldbik, H.C.M. Knoops, W.M.M. Kessels, and P.H.L. Notten, 'Atomic Layer Deposition of $LiCoO_2$ Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries' J. Electrochem. Soc., 160, A3066-A3071 (2013). https://doi.org/10.1149/2.011305jes
  14. X. Wang and G. Yushin, 'Chemical Vapor Deposition and Atomic Layer Deposition for Advanced Lithium Ion Batteries and Supercapacitors' Energy & Environ. Sci., 8, 1889-1904 (2015). https://doi.org/10.1039/C5EE01254F
  15. N.P. Dasgupta, H.-B.-R. Lee, S.F. Bent, and P.S. Weiss, 'Recent Advances in Atomic Layer Deposition' Chem. Mater., 28, 1943-1947 (2016). https://doi.org/10.1021/acs.chemmater.6b00673
  16. J. Ahn, E.K. Jang, S. Yoon, S.-J. Lee, S.-J. Sung, D.-H. Kim, and K.Y. Cho, 'Ultrathin $ZrO_2$ on $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ Electrode Surface via Atomic Layer Deposition for High-Voltage Operation in Lithium-Ion Batteries' Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2019.04.123 https://doi.org/10.1016/j.apsusc.2019.04.123
  17. Y.S. Jung, A.S. Cavanagh, L.A. Riley, S.H. Kang, A.C. Dillon, M.D. Groner, S.M. George, and S.H. Lee, 'Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries' Adv. Mater., 22, 2172-2176 (2010). https://doi.org/10.1002/adma.200903951
  18. D. Guan, J.A. Jeevarajan, and Y. Wang, 'Enhanced Cycleability of $LiMn_2O_4$ Cathodes by Atomic Layer Deposition of Nanosized-Thin $Al_2O_3$ Coatings' Nanoscale, 3, 1465-1469 (2011). https://doi.org/10.1039/c0nr00939c
  19. Y.S. Jung, A.S. Cavanagh, Y. Yan, S.M. George, and A. Manthiram, 'Effects of Atomic Layer Deposition of $Al_2O_3$ on the $Li[Li_{0.20}Mn_{0.54}Ni_{0.13}Co_{0.13]}O_2$ Cathode for Lithium-Ion Batteries' J. Electrochem. Soc., 158, A1298-A1302 (2011). https://doi.org/10.1149/2.030112jes
  20. S. Boukhalfa, K. Evanoff, and G. Yushin, 'Atomic Layer Deposition of Vanadium Oxide on Carbon Nanotubes for High-Power Supercapacitor Electrodes' Energy & Environ. Sci., 5, 6872-6879 (2012). https://doi.org/10.1039/c2ee21110f
  21. H.-M. Cheng, F.-M. Wang, J.P. Chu, R. Santhanam, J. Rick, and S.-C. Lo, 'Enhanced Cycleability in Lithium Ion Batteries: Resulting from Atomic Layer Deposition of $Al_2O_3$ or $TiO_2$ on $LiCoO_2$ Electrodes' J. Phys. Chem. C, 116, 7629-7637 (2012).
  22. Y.S. Jung, P. Lu, A.S. Cavanagh, C. Ban, G.-H. Kim, S.-H. Lee, S.M. George, S.J. Harris, and A.C. Dillon, 'Unexpected Improved Performance of ALD Coated $LiCoO_2$/Graphite Li-Ion Batteries' Adv. Energy Mater., 3, 213-219 (2013). https://doi.org/10.1002/aenm.201200370
  23. A.Y. Shenouda and H.K. Liu, 'Studies on Electrochemical Behavior of Zinc-Doped $LiFePO_4$ for Lithium Battery Positive Electrode' J. Alloys Compd., 477, 498-503 (2009). https://doi.org/10.1016/j.jallcom.2008.10.077
  24. J.-Z. Kong, C. Ren, G.-A. Tai, X. Zhang, A.-D. Li, D. Wu, H. Li, and F. Zhou, 'Ultrathin ZnO Coating for Improved Electrochemical Performance Of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Material' J. Power Sources, 266, 433-439 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.027
  25. X. Xiao, P. Lu, and D. Ahn, 'Ultrathin Multifunctional Oxide Coatings for Lithium Ion Batteries' Adv. Mater., 23, 3911-3915 (2011). https://doi.org/10.1002/adma.201101915
  26. O.B. Chae, S. Park, J.H. Ryu, and S.M. Oh, 'Performance Improvement of Nano-Sized Zinc Oxide Electrode by Embedding in Carbon Matrix for Lithium-Ion Batteries' J. Electrochem. Soc., 160, A11-A14 (2013). https://doi.org/10.1149/2.024301jes
  27. C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. Mínguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M.I. Dar, M.K. Nazeeruddin, and H.J. Bolink, 'Flexible High Efficiency Perovskite Solar Cells' Energy & Environ. Sci., 7, 994-997 (2014). https://doi.org/10.1039/c3ee43619e
  28. Z.-L. Tseng, C.-H. Chiang, S.-H. Chang, and C.-G. Wu, 'Surface Engineering of ZnO Electron Transporting Layer via Al Doping for High Efficiency Planar Perovskite Solar Cells' Nano, 28, 311-318 (2016).