DOI QR코드

DOI QR Code

Reusing the Liquid Fraction Generated from Leaching and Wet Torrefaction of Empty Fruit Bunch

Lee, Jae-Won;Choi, Jun-Ho;Im, Hyeon-Soo;Um, Min;Lee, Hyoung-Woo

  • Received : 2018.10.06
  • Accepted : 2019.04.10
  • Published : 2019.06.01

Abstract

Leaching ($60^{\circ}C$, 5 min) and wet torrefaction ($200^{\circ}C$, 5 min) of empty fruit bunch (EFB) were carried out to improve the fuel properties; each liquid fraction was reused for leaching and wet torrefaction, respectively. In the leaching process, potassium was effectively removed because the leaching solution contained 707.5 ppm potassium. Inorganic compounds were accumulated in the leaching solution by increasing the reuse cycle of leaching solution. The major component of the leached biomass did not differ significantly from the raw material (p-value < 0.05). Inorganic compounds in the biomass were more effectively removed by sequential leaching and wet torrefaction (61.1%) than by only the leaching process (50.1%) at the beginning of the liquid fraction reuse. In the sequential leaching and wet torrefaction, the main hydrolysate component was xylose (2.36~4.17 g/L). This implied that hemicellulose was degraded during wet torrefaction. As in the leaching process, potassium was effectively removed and the concentration was accumulated by increasing the reuse cycle of wet torrefaction hydrolysates. There was no significant change in the chemical composition of wet torrefied biomass, which implied that fuel properties of biomass were constantly maintained by the reuse (four times) of the liquid fraction generated from leaching and wet torrefaction.

Keywords

Empty fruit bunch;Leaching;Wet torrefaction;Ash;Inorganic compounds

References

  1. KESIS, "Production of New & Renewable Energy by Region (toe)," Korea Energy Statistics Information System. Ulsan, Korea (2018).
  2. Deng, L., Zhang, T. and Che, D., "Effect Water Washing on Fuel Properties, Pyrolysis and Combustion Characteristics, and Ash Fusibility of Biomass," Fuel Process. Technol., 106, 712-720(2013). https://doi.org/10.1016/j.fuproc.2012.10.006
  3. Nielsen, H. P., Baxter, L. L., Sclippab, G., Morey, C., Frandsen, F. J. and Dam-johnsen, K., "Deposition of Potassium Saltes on Heat Transfer in Straw-fired Boilers: a Pilot-scale Study," Fuel, 79, 131-139(2000). https://doi.org/10.1016/S0016-2361(99)00090-3
  4. Ma, T., Fan, C., Hao, L., Li, S., Song, W. and Lin, W., "Fusion Characterization of Biomass Ash," Thermochim. Acta, 638, 1-9 (2016). https://doi.org/10.1016/j.tca.2016.06.008
  5. Smith, A. M., Singh, S. and Ross, A. B., "Fate of Inorganic Material During Hydrothermal Carbonization of Biomass: Influence of Feedstock on Combustion Behavior of Hydrochar," Fuel, 169, 135-145(2016). https://doi.org/10.1016/j.fuel.2015.12.006
  6. Bach, Q. V. and Skreiberg, O., "Upgrading Biomass Fuels via wet Torrefaction: A Review and Comparison with dry Torrefaction," J. Renew. Sustain. Energy, 54, 665-677(2016). https://doi.org/10.1016/j.rser.2015.10.014
  7. Chin, K. L., H'ng, P. S., Paridah, M. T., Szymona, K., Maminski, M., Lee, S. H., Lum, W. C., Nurliyana, M. Y., Chow, M. J. and Go, W. Z., "Reducing Ash Related Operation Problems of Fast Growing Timber Species and Oil Palm Biomass for Combustion Applications Using Leaching Techniques," Energy, 90, 622- 630(2015). https://doi.org/10.1016/j.energy.2015.07.094
  8. Persson, H., Kantarelis, E., Evangelopoulos, P. and Yang, W., "Wood-derived Acid Leaching of Biomass for Enhanced Production of Sugars and Sugar Derivatives During Pyrolysis: Influence of Acidity and Treatment Time," J. Anal. Appl. Pyrolysis, 127, 329-334(2017). https://doi.org/10.1016/j.jaap.2017.07.018
  9. Zhang, S., Su, Y., Zhu, S., Zhang, H. and Liu, X., "Effects of Torrefaction and Organic-acid Leaching Pretreatment on the Pyrolysis Behavior of Rice Husk," Energy, 149, 804-813(2018). https://doi.org/10.1016/j.energy.2018.02.110
  10. Yu, C., Wang, L., Anderson, S. N., VanderGheynst, J. S., Upadhyaya, S. K. and Jenkins, B. M., "Influence of Leaching Pretreatment on Fuel Properties of Biomass," Fuel Process Technol., 128, 43-53(2014). https://doi.org/10.1016/j.fuproc.2014.06.030
  11. Zheng, A., Zhao, Z., Chang, S., Huang, Z., Zhao, K., Wei, G. and Li, H., "Comparison of the Effect of Wet and Dry Torrefaction on Chemical Structure and Pyrolysis Behavior of Corncobs," Biomass Bioenergy, 176, 15-22(2015).
  12. Na, B., Kim, Y., Lim, W., Lee, S., Lee, H. and Lee, J., "Torrefaction of Oil Palm Mesocarp Fiber and Their Effect on Pelletizing," Biomass Bioenergy, 52, 159-165(2013). https://doi.org/10.1016/j.biombioe.2013.02.041
  13. Ho, S., Zhang, C., Chen, W. and Chang, J., "Characterization of Biomass Waste Torrefaction Under Conventional and Microwave Heating," Bioresour. Technol., 264, 7-16(2018). https://doi.org/10.1016/j.biortech.2018.05.047
  14. Lynam, J. G., Coronella, C. J., Yan, W., Reza, M. T. and Vasquez, V. R., "Acetic Acid and Lithium Chloride Effects on Hydrothermal Carbonization of Lignocellulosic Biomass," Bioresour. Technol., 102, 6192-6199(2011). https://doi.org/10.1016/j.biortech.2011.02.035
  15. Lee, S. and Lee, J., "Optimization of Biomass Torrefaction Conditions by the Gain and Loss Method and Regression Model Analysis," Bioresour. Technol., 172, 438-443(2014). https://doi.org/10.1016/j.biortech.2014.09.016
  16. Kambo, H. S. and Dutta, A., "Comparative Evaluation of Torrefaction and Hydrothermal Carbonization of Lignocellulosic Biomass for the Production of Solid Biofuel," Energy Conv. Manag., 105, 746-755(2015). https://doi.org/10.1016/j.enconman.2015.08.031
  17. Sluiter, A., Hames, B., Ruiz, R., Scarlate, C., Sluiter, J., Templeton, D. and Crocker, D., "Laboratory Analytical Procedure No. TP-510-42618," NREL, Goden, CO(2012).
  18. Saddawi, A., Jones, J. M., Williams, A. and Coeur, C., "Commodity Fuels from Biomass Through Pretreatment and Torrefaction: Effects of Mineral Content on Torrefied Fuel Characteristics and Quality," Energy Fuels, 26, 6466-6474(2012). https://doi.org/10.1021/ef2016649
  19. Thy, P., Grundvig, S., Jenkins, B. M., Shiraki, R. and Lesher, C. E., "Analytical Controlled Losses of Potassium from Straw Ashes," Energy Fuels, 19, 2571-2575(2005). https://doi.org/10.1021/ef050042e
  20. Tonn, B., Thumm, U., Lewandowski, I. and Claupein, W., "Leaching of Biomass from Semi-natural Grasslands-Effects on Chemical Composition and Ash High-temperature Behavior," Biomass Bioenergy, 36, 390-403(2012). https://doi.org/10.1016/j.biombioe.2011.11.014
  21. Supancic, K., Obernberger, I., Kienzl, N. and Arich A., "Conversion and Leaching Characteristics of Biomass Ashes During Outdoor Storage-Results of Laboratory Tests," Biomass Bioenergy, 61, 211-226(2014). https://doi.org/10.1016/j.biombioe.2013.12.014
  22. Novianti, S., Nurdiawati, A., Zaini, I. N., Prawisudha, P., Sumida, H. and Yoshikawa, K., "Low-potassium Fuel Production from Empty Fruit Bunches by Hydrothermal Treatment Processing and Water Leaching," Energy Procedia, 75, 584-589(2015). https://doi.org/10.1016/j.egypro.2015.07.460
  23. Nurdiawati, A., Novianti, S., Zaini, I.N., Nakhshinieva, B., Sumida, H., Takahashi, F. and Yoshikawa, K., "Evaluation of Hydrothermal Treatment of Empty Fruit Bunch for Solid Fuel and Liquid Organic Fertilizer co-production," Energy Procedia, 79, 226-232 (2015). https://doi.org/10.1016/j.egypro.2015.11.469
  24. Makela, M., Fullana, A. and Yoshikawa, K., "Ash Behavior During Hydrothermal Treatment for Solid Fuel Applications. Part 1: Overview of Different Feedstock," Energy Conv. Manag., 121, 402-408(2016). https://doi.org/10.1016/j.enconman.2016.05.016

Acknowledgement

Supported by : Korea Electric Power Corporation (KEPCO)