DOI QR코드

DOI QR Code

Site-Specific Labeling of Proteins Using Unnatural Amino Acids

  • Lee, Kyung Jin (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kang, Deokhee (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Hee-Sung (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2019.04.15
  • Accepted : 2019.05.02
  • Published : 2019.05.31

Abstract

Labeling of a protein with a specific dye or tag at defined positions is a critical step in tracing the subtle behavior of the protein and assessing its cellular function. Over the last decade, many strategies have been developed to achieve selective labeling of proteins in living cells. In particular, the site-specific unnatural amino acid (UAA) incorporation technique has gained increasing attention since it enables attachment of various organic probes to a specific position of a protein in a more precise way. In this review, we describe how the UAA incorporation technique has expanded our ability to achieve site-specific labeling and visualization of target proteins for functional analyses in live cells.

E1BJB7_2019_v42n5_386_f0001.png 이미지

Fig. 1. Unnatural amino acids used for site-specific protein labeling.

E1BJB7_2019_v42n5_386_f0002.png 이미지

Fig. 2. Bioorthogonal reactions for labeling of a protein of interest.

E1BJB7_2019_v42n5_386_f0003.png 이미지

Fig. 3. Promising applications of UAA-based protein-labeling scheme.

Table 1. Unnatural amino acids and bioorthogonal conjugation schemes

E1BJB7_2019_v42n5_386_t0001.png 이미지

Acknowledgement

Supported by : National Research Foundation of Korea, Samsung Science & Technology Foundation

References

  1. Adams, S.R., Campbell, R.E., Gross, L.A., Martin, B.R., Walkup, G.K., Yao, Y., Llopis, J., and Tsien, R.Y. (2002). New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063-6076. https://doi.org/10.1021/ja017687n
  2. Agard, N.J., Prescher, J.A., and Bertozzi, C.R. (2004). A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 126, 15046-15047. https://doi.org/10.1021/ja044996f
  3. Alamudi, S.H., Satapathy, R., Kim, J., Su, D., Ren, H., Das, R., Hu, L., Alvarado-Martínez, E., Lee, J.Y., Hoppmann, C., et al. (2016). Development of background-free tame fluorescent probes for intracellular live cell imaging. Nat. Commun. 7, 11964. https://doi.org/10.1038/ncomms11964
  4. Ambrogelly, A., Palioura, S., and Soll, D. (2007). Natural expansion of the genetic code. Nat. Chem. Biol. 3, 29-35. https://doi.org/10.1038/nchembio847
  5. Baskin, J.M., Prescher, J.A., Laughlin, S.T., Agard, N.J., Chang, P.V., Miller, I.A., Lo, A., Codelli, J.A., and Bertozzi, C.R. (2007). Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 104, 16793-16797. https://doi.org/10.1073/pnas.0707090104
  6. Besanceney-Webler, C., Jiang, H., Zheng, T., Feng, L., Soriano del Amo, D., Wang, W., Klivansky, L.M., Marlow, F.L., Liu, Y., and Wu, P. (2011). Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. Angew. Chem. Int. Ed. Engl. 50, 8051-8056. https://doi.org/10.1002/anie.201101817
  7. Blackman, M.L., Royzen, M., and Fox, J.M. (2008). Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 130, 13518-13519. https://doi.org/10.1021/ja8053805
  8. Blight, S.K., Larue, R.C., Mahapatra, A., Longstaff, D.G., Chang, E., Zhao, G., Kang, P.T., Green-Church, K.B., Chan, M.K., and Krzycki, J.A. (2004). Direct charging of tRNA(CUA) with pyrrolysine in vitro and in vivo. Nature 431, 333-335. https://doi.org/10.1038/nature02895
  9. Boger, D.L. (1986). Diels-Alder reactions of heterocyclic aza dienes. Scope and applications. Chem. Rev. 86, 781-793. https://doi.org/10.1021/cr00075a004
  10. Borrmann, A., Milles, S., Plass, T., Dommerholt, J., Verkade, J.M., Wiessler, M., Schultz, C., van Hest, J.C., van Delft, F.L., and Lemke, E.A. (2012). Genetic encoding of a bicyclo[6.1.0]nonyne-charged amino acid enables fast cellular protein imaging by metal-free ligation. Chembiochem 13, 2094-2099. https://doi.org/10.1002/cbic.201200407
  11. Brewer, G.J. (2010). Risks of copper and iron toxicity during aging in humans. Chem. Res. Toxicol. 23, 319-326. https://doi.org/10.1021/tx900338d
  12. Bryson, D.I., Fan, C., Guo, L.T., Miller, C., Soll, D., and Liu, D.R. (2017). Continuous directed evolution of aminoacyl-tRNA synthetases. Nat. Chem. Biol. 13, 1253-1260. https://doi.org/10.1038/nchembio.2474
  13. Calve, S., Witten, A.J., Ocken, A.R., and Kinzer-Ursem, T.L. (2016). Incorporation of non-canonical amino acids into the developing murine proteome. Sci. Rep. 6, 32377. https://doi.org/10.1038/srep32377
  14. Carlson, B.A., Xu, X.M., Kryukov, G.V., Rao, M., Berry, M.J., Gladyshev, V.N., and Hatfield, D.L. (2004). Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase. Proc. Natl. Acad. Sci. U. S. A. 101, 12848-12853. https://doi.org/10.1073/pnas.0402636101
  15. Chan, T.R., Hilgraf, R., Sharpless, K.B., and Fokin, V.V. (2004). Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org. Lett. 6, 2853-2855. https://doi.org/10.1021/ol0493094
  16. Charbon, G., Brustad, E., Scott, K.A., Wang, J., Lobner-Olesen, A., Schultz, P.G., Jacobs-Wagner, C., and Chapman, E. (2011a). Subcellular protein localization by using a genetically encoded fluorescent amino acid. Chembiochem 12, 1818-1821. https://doi.org/10.1002/cbic.201100282
  17. Charbon, G., Wang, J., Brustad, E., Schultz, P.G., Horwich, A.L., Jacobs-Wagner, C., and Chapman, E. (2011b). Localization of GroEL determined by in vivo incorporation of a fluorescent amino acid. Bioorg. Med. Chem. Lett. 21, 6067-6070. https://doi.org/10.1016/j.bmcl.2011.08.057
  18. Chatterjee, A., Guo, J., Lee, H.S., and Schultz, P.G. (2013). A genetically encoded fluorescent probe in mammalian cells. J. Am. Chem. Soc. 135, 12540-12543. https://doi.org/10.1021/ja4059553
  19. Chen, X., and Wu, Y.W. (2016). Selective chemical labeling of proteins. Org. Biomol. Chem. 14, 5417-5439. https://doi.org/10.1039/C6OB00126B
  20. Costantini, L.M., and Snapp, E.L. (2015). Going viral with fluorescent proteins. J. Virol. 89, 9706-9708. https://doi.org/10.1128/JVI.03489-13
  21. Crivat, G., and Taraska, J.W. (2012). Imaging proteins inside cells with fluorescent tags. Trends Biotechnol. 30, 8-16. https://doi.org/10.1016/j.tibtech.2011.08.002
  22. Das, D.K., Govindan, R., Nikic-Spiegel, I., Krammer, F., Lemke, E.A., and Munro, J.B. (2018). Direct visualization of the conformational dynamics of single influenza hemagglutinin trimers. Cell 174, 926-937.e12. https://doi.org/10.1016/j.cell.2018.05.050
  23. Debets, M.F., van der Doelen, C.W., Rutjes, F.P., and van Delft, F.L. (2010). Azide: a unique dipole for metal-free bioorthogonal ligations. Chembiochem 11, 1168-1184. https://doi.org/10.1002/cbic.201000064
  24. Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A., and Schuman, E.M. (2006). Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. U. S. A. 103, 9482-9487. https://doi.org/10.1073/pnas.0601637103
  25. Dommerholt, J., Rutjes, F.P.J.T., and van Delft, F.L. (2016). Strain-promoted 1,3-dipolar cycloaddition of cycloalkynes and organic azides. Top. Curr. Chem. (Cham.) 374, 16. https://doi.org/10.1007/s41061-016-0016-4
  26. Dommerholt, J., Schmidt, S., Temming, R., Hendriks, L.J., Rutjes, F.P., van Hest, J.C., Lefeber, D.J., Friedl, P., and van Delft, F.L. (2010). Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew. Chem. Int. Ed. Engl. 49, 9422-9425. https://doi.org/10.1002/anie.201003761
  27. Erdmann, I., Marter, K., Kobler, O., Niehues, S., Abele, J., Muller, A., Bussmann, J., Storkebaum, E., Ziv, T., Thomas, U., et al. (2015). Cell-selective labelling of proteomes in Drosophila melanogaster. Nat. Commun. 6, 7521. https://doi.org/10.1038/ncomms8521
  28. Fernandez, M.V., and Freed, E.O. (2017). "Expand and Click": a new method for labeling HIV-1 envelope glycoproteins. Cell Chem. Biol. 24, 548-550. https://doi.org/10.1016/j.chembiol.2017.05.006
  29. Forchhammer, K., Leinfelder, W., and Bock, A. (1989). Identification of a novel translation factor necessary for the incorporation of selenocysteine into protein. Nature 342, 453-456. https://doi.org/10.1038/342453a0
  30. Gautier, A., Juillerat, A., Heinis, C., Correa, I.R., Jr., Kindermann, M., Beaufils, F., and Johnsson, K. (2008). An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128-136. https://doi.org/10.1016/j.chembiol.2008.01.007
  31. Greiss, S., and Chin, J.W. (2011). Expanding the genetic code of an animal. J. Am. Chem. Soc. 133, 14196-14199. https://doi.org/10.1021/ja2054034
  32. Han, S., Yang, A., Lee, S., Lee, H.W., Park, C.B., and Park H.S. (2017). Expanding the genetic code of Mus musculus. Nat. Commun. 8, 14568. https://doi.org/10.1038/ncomms14568
  33. Hancock, S.M., Uprety, R., Deiters, A., and Chin, J.W. (2010). Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. J. Am. Chem. Soc. 132, 14819-14824. https://doi.org/10.1021/ja104609m
  34. He, X.P., Zeng, Y.L., Zang, Y., Li, J., Field, R.A., and Chen, G.R. (2016). Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr. Res. 429, 1-22. https://doi.org/10.1016/j.carres.2016.03.022
  35. Herner, A., and Lin, Q. (2016). Photo-triggered click chemistry for biological applications. Top. Curr. Chem. (Cham.) 374, 1. https://doi.org/10.1007/s41061-015-0002-2
  36. Hong, V., Presolski, S.I., Ma, C., and Finn, M.G. (2009). Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. Engl. 48, 9879-9883. https://doi.org/10.1002/anie.200905087
  37. Huisgen, R., Szeimies, G., and Mobius, L. (1967). 1.3-Dipolare Cycloadditionen, XXXII. Kinetik der additionen organischer Azide an CCMehrfachbindungen. Chemische Berichte 100, 2494-2507. https://doi.org/10.1002/cber.19671000806
  38. Kayser, H., Zeitler, R., Kannicht, C., Grunow, D., Nuck, R., and Reutter, W. (1992). Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267, 16934-16938.
  39. Kennedy, D.C., McKay, C.S., Legault, M.C., Danielson, D.C., Blake, J.A., Pegoraro, A.F., Stolow, A., Mester, Z., and Pezacki, J.P. (2011). Cellular consequences of copper complexes used to catalyze bioorthogonal click reactions. J. Am. Chem. Soc. 133, 17993-18001. https://doi.org/10.1021/ja2083027
  40. Keppler, A., Gendreizig, S., Gronemeyer, T., Pick, H., Vogel, H., and Johnsson, K. (2003). A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86-89. https://doi.org/10.1038/nbt765
  41. Kim, J., and Heo, W.D. (2018). Synergistic ensemble of optogenetic actuators and dynamic indicators in cell biology. Mol. Cells 41, 809-817.
  42. Kolb, H.C., Finn, M.G., and Sharpless, K.B. (2001). Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004-2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  43. Kozma, E., Nikic, I., Varga, B.R., Aramburu, I.V., Kang, J.H., Fackler, O.T., Lemke, E.A., and Kele, P. (2016). Hydrophilic trans-cyclooctenylated noncanonical amino acids for fast intracellular protein labeling. Chembiochem 17, 1518-1524. https://doi.org/10.1002/cbic.201600284
  44. Kurra, Y., Odoi, K.A., Lee, Y.J., Yang, Y., Lu, T., Wheeler, S.E., Torres-Kolbus, J., Deiters, A., and Liu, W.R. (2014). Two rapid catalyst-free click reactions for in vivo protein labeling of genetically encoded strained alkene/alkyne functionalities. Bioconjug. Chem. 25, 1730-1738. https://doi.org/10.1021/bc500361d
  45. Lang, K., and Chin, J.W. (2014a). Bioorthogonal reactions for labeling proteins. ACS Chem. Biol. 9, 16-20. https://doi.org/10.1021/cb4009292
  46. Lang, K., and Chin, J.W. (2014b). Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114, 4764-4806. https://doi.org/10.1021/cr400355w
  47. Lang, K., Davis, L., and Chin, J.W. (2015). Genetic encoding of unnatural amino acids for labeling proteins. Methods Mol. Biol. 1266, 217-228.
  48. Lang, K., Davis, L., Torres-Kolbus, J., Chou, C., Deiters, A., and Chin, J.W. (2012a). Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat. Chem. 4, 298-304. https://doi.org/10.1038/nchem.1250
  49. Lang, K., Davis, L., Wallace, S., Mahesh, M., Cox, D.J., Blackman, M.L., Fox, J.M., and Chin, J.W. (2012b). Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. J. Am. Chem. Soc. 134, 10317-10320. https://doi.org/10.1021/ja302832g
  50. Laughlin, S.T., Baskin, J.M., Amacher, S.L., and Bertozzi, C.R. (2008). In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664-667. https://doi.org/10.1126/science.1155106
  51. Lee, H.S., Guo, J., Lemke, E.A., Dimla, R.D., and Schultz, P.G. (2009). Genetic incorporation of a small, environmentally sensitive, fluorescent probe into proteins in Saccharomyces cerevisiae. J. Am. Chem. Soc. 131, 12921-12923. https://doi.org/10.1021/ja904896s
  52. Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M.A., and Bock, A. (1988). Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331, 723-725. https://doi.org/10.1038/331723a0
  53. Li, F., Zhang, H., Sun, Y., Pan, Y., Zhou, J., and Wang, J. (2013). Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angew. Chem. Int. Ed. Engl. 52, 9700-9704. https://doi.org/10.1002/anie.201303477
  54. Li, L., and Zhang, Z. (2016). Development and applications of the coppercatalyzed azide-alkyne cycloaddition (CuAAC) as a bioorthogonal reaction. Molecules 21, 1393. https://doi.org/10.3390/molecules21101393
  55. Liu, C.C., and Schultz, P.G. (2010). Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413-444. https://doi.org/10.1146/annurev.biochem.052308.105824
  56. Liu, K., Enns, B., Evans, B., Wang, N., Shang, X., Sittiwong, W., Dussault, P.H., and Guo, J. (2017). A genetically encoded cyclobutene probe for labelling of live cells. Chem. Commun. (Camb.) 53, 10604-10607. https://doi.org/10.1039/C7CC05580C
  57. Liu, W., Brock, A., Chen, S., Chen, S., and Schultz, P.G. (2007). Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat. Methods 4, 239-244. https://doi.org/10.1038/nmeth1016
  58. Liu, Z., Lavis, L.D., and Betzig, E. (2015). Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644-659. https://doi.org/10.1016/j.molcel.2015.02.033
  59. Los, G.V., Encell, L.P., McDougall, M.G., Hartzell, D.D., Karassina, N., Zimprich, C., Wood, M.G., Learish, R., Ohana, R.F., Urh, M., et al. (2008). HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373-382. https://doi.org/10.1021/cb800025k
  60. Lotze, J., Reinhardt, U., Seitz, O., and Beck-Sickinger, A.G. (2016). Peptidetags for site-specific protein labelling in vitro and in vivo. Mol. Biosyst. 12, 1731-1745. https://doi.org/10.1039/C6MB00023A
  61. Mbua, N.E., Guo, J., Wolfert, M.A., Steet, R., and Boons, G.J. (2011). Strainpromoted alkyne-azide cycloadditions (SPAAC) reveal new features of glycoconjugate biosynthesis. Chembiochem 12, 1912-1921. https://doi.org/10.1002/cbic.201100117
  62. McKay, C.S., and Finn, M.G. (2014). Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem. Biol. 21, 1075-1101. https://doi.org/10.1016/j.chembiol.2014.09.002
  63. Milles, S., Tyagi, S., Banterle, N., Koehler, C., VanDelinder, V., Plass, T., Neal, A.P., and Lemke, E.A. (2012). Click strategies for single-molecule protein fluorescence. J. Am. Chem. Soc. 134, 5187-5195. https://doi.org/10.1021/ja210587q
  64. Molteni, G., Orlandi, M., and Broggini, G. (2000). Nitrilimine cycloadditions in aqueous media. J. Chem. Soc. 1, 3742-3745.
  65. Mukai, T., Lajoie, M.J., Englert, M., and Soll, D. (2017). Rewriting the genetic code. Annu. Rev. Microbiol. 71, 557-577. https://doi.org/10.1146/annurev-micro-090816-093247
  66. Neef, A.B., and Schultz, C. (2009). Selective fluorescence labeling of lipids in living cells. Angew. Chem. Int. Ed. Engl. 48, 1498-1500. https://doi.org/10.1002/anie.200805507
  67. Nikic, I., Kang, J.H., Girona, G.E., Aramburu, I.V., and Lemke, E.A. (2015). Labeling proteins on live mammalian cells using click chemistry. Nat. Protoc. 10, 780-791. https://doi.org/10.1038/nprot.2015.045
  68. Nikic, I., Plass, T., Schraidt, O., Szymanski, J., Briggs, J.A., Schultz, C., and Lemke, E.A. (2014). Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew. Chem. Int. Ed. Engl. 53, 2245-2249. https://doi.org/10.1002/anie.201309847
  69. Ning, X., Guo, J., Wolfert, M.A., and Boons, G.J. (2008). Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angew. Chem. Int. Ed. Engl. 47, 2253-2255. https://doi.org/10.1002/anie.200705456
  70. Oliveira, B.L., Guo, Z., and Bernardes, G.J.L. (2017). Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev. 46, 4895-4950. https://doi.org/10.1039/C7CS00184C
  71. Peng, T., and Hang, H.C. (2016). Site-specific bioorthogonal labeling for fluorescence imaging of intracellular proteins in living cells. J. Am. Chem. Soc. 138, 14423-14433. https://doi.org/10.1021/jacs.6b08733
  72. Plass, T., Milles, S., Koehler, C., Schultz, C., and Lemke, E.A. (2011). Genetically encoded copper-free click chemistry. Angew. Chem. Int. Ed. Engl. 50, 3878-3881. https://doi.org/10.1002/anie.201008178
  73. Plass, T., Milles, S., Koehler, C., Szymanski, J., Mueller, R., Wiessler, M., Schultz, C., and Lemke, E.A. (2012). Amino acids for Diels-Alder reactions in living cells. Angew Chem. Int. Ed. Engl. 51, 4166-4170. https://doi.org/10.1002/anie.201108231
  74. Polycarpo, C., Ambrogelly, A., Berube, A., Winbush, S.M., McCloskey, J.A., Crain, P.F., Wood, J.L., and Soll, D. (2004). An aminoacyl-tRNA synthetase that specifically activates pyrrolysine. Proc. Natl. Acad. Sci. U. S. A. 101, 12450-12454. https://doi.org/10.1073/pnas.0405362101
  75. Prescher, J.A., and Bertozzi, C.R. (2005). Chemistry in living systems. Nat. Chem. Biol. 1, 13-21. https://doi.org/10.1038/nchembio0605-13
  76. Prokhorov, A.M., and Kozhevnikov, D.N. (2012). Reactions of triazines and tetrazines with dienophiles. Chem. Heterocycl. Compd. 48, 1153-1176. https://doi.org/10.1007/s10593-012-1117-9
  77. Ramil, C.P., and Lin, Q. (2014). Photoclick chemistry: a fluorogenic lighttriggered in vivo ligation reaction. Curr. Opin. Chem. Biol. 21, 89-95. https://doi.org/10.1016/j.cbpa.2014.05.024
  78. Saxon, E., and Bertozzi, C.R. (2000). Cell surface engineering by a modified Staudinger reaction. Science 287, 2007-2010. https://doi.org/10.1126/science.287.5460.2007
  79. Sengupta, P., Van Engelenburg, S., and Lippincott-Schwartz, J. (2012). Visualizing cell structure and function with point-localization superresolution imaging. Dev. Cell 23, 1092-1102. https://doi.org/10.1016/j.devcel.2012.09.022
  80. Serfling, R., Lorenz, C., Etzel, M., Schicht, G., Bottke, T., Morl, M., and Coin, I. (2018). Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells. Nucleic Acids Res. 46, 1-10. https://doi.org/10.1093/nar/gkx1156
  81. Shaner, N.C., Patterson, G.H., and Davidson, M.W. (2007). Advances in fluorescent protein technology. J. Cell Sci. 120, 4247-4260. https://doi.org/10.1242/jcs.005801
  82. Singh, I., and Heaney, F. (2011). Solid phase strain promoted "click" modification of DNA via [3+2]-nitrile oxide-cyclooctyne cycloadditions. Chem. Commun. (Camb.) 47, 2706-2708. https://doi.org/10.1039/C0CC03985C
  83. Sletten, E.M., and Bertozzi, C.R. (2009). Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl. 48, 6974-6998. https://doi.org/10.1002/anie.200900942
  84. Song, W., Wang, Y., Qu, J., Madden, M.M., and Lin, Q. (2008). A photoinducible 1,3-dipolar cycloaddition reaction for rapid, selective modification of tetrazole-containing proteins. Angew. Chem. Int. Ed. Engl. 47, 2832-2835. https://doi.org/10.1002/anie.200705805
  85. Stephens, D.J., and Allan, V.J. (2003). Light microscopy techniques for live cell imaging. Science 300, 82-86. https://doi.org/10.1126/science.1082160
  86. Stone, S.E., Glenn, W.S., Hamblin, G.D., and Tirrell, D.A. (2017). Cell-selective proteomics for biological discovery. Curr. Opin. Chem. Biol. 36, 50-57. https://doi.org/10.1016/j.cbpa.2016.12.026
  87. Su Hui Teo, C., Serwa, R.A., and O'Hare, P. (2016). Spatial and temporal resolution of global protein synthesis during HSV infection using bioorthogonal precursors and click chemistry. PLoS Pathog. 12, e1005927. https://doi.org/10.1371/journal.ppat.1005927
  88. Summerer, D., Chen, S., Wu, N., Deiters, A., Chin, J.W., and Schultz, P.G. (2006). A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. U. S. A. 103, 9785-9789. https://doi.org/10.1073/pnas.0603965103
  89. Suzuki, T., Miller, C., Guo, L.T., Ho, J.M.L., Bryson, D.I., Wang, Y.S., Liu, D.R., and Soll, D. (2017). Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase. Nat. Chem. Biol. 13, 1261-1266. https://doi.org/10.1038/nchembio.2497
  90. Swiderska, K.W., Szlachcic, A., Czyrek, A., Zakrzewska, M., and Otlewski, J. (2017). Site-specific conjugation of fibroblast growth factor 2 (FGF2) based on incorporation of alkyne-reactive unnatural amino acid. Bioorg. Med. Chem. 25, 3685-3693. https://doi.org/10.1016/j.bmc.2017.05.003
  91. Thalhammer, F., Wallfahrer, U., and Saue, J. (1990). Reaktivitat einfacher offenkettiger und cyclischer dienophile bei Diels-Alder-reaktionen mit inversem elektronenbedarf. Tetrahedron Lett. 31, 6851-6854. https://doi.org/10.1016/S0040-4039(00)97188-0
  92. Tom Dieck, S., Muller, A., Nehring, A., Hinz, F.I., Bartnik, I., Schuman, E.M., and Dieterich, D.C. (2012). Metabolic labeling with noncanonical amino acids and visualization by chemoselective fluorescent tagging. Curr. Protoc. Cell Biol. 56, 7.11.1-7.11.29.
  93. Toomre, D., and Bewersdorf, J. (2010). A new wave of cellular imaging. Annu. Rev. Cell Dev. Biol. 26, 285-314. https://doi.org/10.1146/annurev-cellbio-100109-104048
  94. Tornoe, C.W., Christensen, C., and Meldal, M. (2002). Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057-3064. https://doi.org/10.1021/jo011148j
  95. Tsien, R.Y. (1998). The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544. https://doi.org/10.1146/annurev.biochem.67.1.509
  96. Uttamapinant, C., Howe, J.D., Lang, K., Beránek, V., Davis, L., Mahesh, M., Barry, N.P., and Chin, J.W. (2015). Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J. Am. Chem. Soc. 137, 4602-4605. https://doi.org/10.1021/ja512838z
  97. van de Linde, S., Heilemann, M., and Sauer, M. (2012). Live-cell superresolution imaging with synthetic fluorophores. Annu. Rev. Phys. Chem. 63, 519-540. https://doi.org/10.1146/annurev-physchem-032811-112012
  98. Vreja, I.C., Nikic, I., Gottfert, F., Bates, M., Krohnert, K., Outeiro, T.F., Hell, S.W., Lemke, E.A., and Rizzoli, S.O. (2015). Super-resolution microscopy of clickable amino acids reveals the effects of fluorescent protein tagging on protein assemblies. ACS Nano 9, 11034-11041. https://doi.org/10.1021/acsnano.5b04434
  99. Wan, W., Tharp, J.M., and Liu, W.R. (2014). Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim. Biophys. Acta 1844, 1059-1070. https://doi.org/10.1016/j.bbapap.2014.03.002
  100. Wang, J., Xie, J., and Schultz, P.G. (2006). A genetically encoded fluorescent amino acid. J. Am. Chem. Soc. 128, 8738-8739. https://doi.org/10.1021/ja062666k
  101. Wang, Y., Vera, C.I., and Lin, Q. (2007). Convenient synthesis of highly functionalized pyrazolines via mild, photoactivated 1 ,3-dipolar cycloaddition. Org. Lett. 9, 4155-4158. https://doi.org/10.1021/ol7017328
  102. Weber, G., and Farris, F.J. (1979). Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino) naphthalene. Biochemistry 18, 3075-3078. https://doi.org/10.1021/bi00581a025
  103. Wu, Y., Zhu, H., Zhang, B., Liu, F., Chen, J., Wang, Y., Wang, Y., Zhang, Z., Wu, L., Si, L., et al. (2016). Synthesis of site-specific radiolabeled antibodies for radioimmunotherapy via genetic code expansion. Bioconjug. Chem. 27, 2460-2468. https://doi.org/10.1021/acs.bioconjchem.6b00412
  104. Young, D.D., and Schultz, P.G. (2018). Playing with the molecules of life. ACS Chem. Biol. 13, 854-870. https://doi.org/10.1021/acschembio.7b00974
  105. Yu, Z., Pan, Y., Wang, Z., Wang, J., and Lin, Q. (2012). Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew. Chem. Int. Ed. Engl. 51, 10600-10604. https://doi.org/10.1002/anie.201205352
  106. Yuan, J., Palioura, S., Salazar, J.C., Su, D., O'Donoghue, P., Hohn, M.J., Cardoso, A.M., Whitman, W.B., and Soll, D. (2006). RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea. Proc. Natl. Acad. Sci. U. S. A. 103, 18923-18927. https://doi.org/10.1073/pnas.0609703104
  107. Zhang, J., Yan, S., He, Z., Ding, C., Zhai, T., Chen, Y., Li, H., Yang, G., Zhou, X., and Wang, P. (2018). Small unnatural amino acid carried raman tag for molecular imaging of genetically targeted proteins. J. Phys. Chem. Lett. 9, 4679-4685. https://doi.org/10.1021/acs.jpclett.8b01991
  108. Zhou, Z., Cironi, P., Lin, A.J., Xu, Y., Hrvatin, S., Golan, D.E., Silver, P.A., Walsh, C.T., and Yin, J. (2007). Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem. Biol. 2, 337-346. https://doi.org/10.1021/cb700054k