DOI QR코드

DOI QR Code

Characteristics of Phthalate Esters-exposed Boar Sperm during Boar Semen Storage

돼지 정액을 보관하는 동안 phthalate esters에 노출된 정자의 특성

  • Lee, A-Sung (College of Animal Life Science, Kangwon National University) ;
  • Lee, Sang-Hee (Institute of Animal Resources, Kangwon National University) ;
  • Lee, Seunghyung (College of Animal Life Science, Kangwon National University) ;
  • Yang, Boo-Keun (College of Animal Life Science, Kangwon National University)
  • 이아성 (강원대학교 동물생명과학대학) ;
  • 이상희 (동물자원공동연구소) ;
  • 이승형 (강원대학교 동물생명과학대학) ;
  • 양부근 (강원대학교 동물생명과학대학)
  • Received : 2018.11.19
  • Accepted : 2019.04.16
  • Published : 2019.04.30

Abstract

Phthalate is a chemical endocrine disrupter and interfere with the action of hormones, estrogens, androgens and thyroid hormones. It also affect cardiovascular, metabolic, immune and reproductive system in the human and animals. Curcumin is antioxidant, anti-inflammatory activity and -cancer properties in the human. We studied whether phthalates damage viability, mitochondrial activity and membrane integrity of sperm in boar semen. We also treated curcumin with/without phthalates in the boar semen. Fresh boar semen was treated with phthalates and/or curcumin for examining sperm characteristics. Sperm characteristics, sperm motility, viability, mitochondrial activity, and membrane integrity were determined during storage of boar semen. Sperm motility and viability in dose-dependent manner decreased by di-n-butyl phthalate (DBP), mono-n-butyl phthalate (MBP) and di-2-ethylhexyl phthalate (DEHP, p<0.05). Phthalates also decreased mitochondrial activity and membrane integrity of sperm (p<0.05). However, sperm motility and viability were higher than untreated-curcumin when DBP, MBP and DEHP treated with a curcumin in boar semen (p<0.05). Mitochondrial activity and membrane integrity of sperm were higher in DBP- and MBP-treated semen with curcumin (p<0.05). In conclusion, phthalates can damage sperm viability and quality during the boar semen storage, and curcumin may protect the boar sperms from phthalates during storage term.

SMGHBM_2019_v29n4_395_f0001.png 이미지

Fig. 1. Effect of DBP, MBP, DEHP (50 μM) and/or curcumin (5 μM) on sperm motility in boar semen. Asterisks indicate significant differences compared with phthalate-treated sperm. Values represented as means ± SEM (p<0.05).

SMGHBM_2019_v29n4_395_f0002.png 이미지

Fig. 2. Effect of DBP, MBP, DEHP (50 μM) and/or curcumin (5 μM) on viability of sperm in boar semen. Asterisks indicate significant differences compared with phthalate-treated sample. Values represented as means ± SEM (p<0.05).

SMGHBM_2019_v29n4_395_f0003.png 이미지

Fig. 3. Effect of DBP, MBP, DEHP (50 μM) and/or curcumin (5 μM) on mitochondrial activity in boar semen. Asterisks indicate significant differences compared with phthalate-treated sample (p<0.05).

SMGHBM_2019_v29n4_395_f0004.png 이미지

Fig. 4. Effect of DBP, MBP, DEHP (50 μM) and/or curcumin (5 μM) on membrane integrity of sperm in boar semen. Asterisks indicate significant differences compared with phthalate-treated sperm. Values represented as means ± SEM (p<0.05).

Table 1. Composition of Modena extender

SMGHBM_2019_v29n4_395_t0001.png 이미지

Table 2. Effect of phthalates on sperm motility

SMGHBM_2019_v29n4_395_t0002.png 이미지

Table 3. Effect of phthalates on viability of sperm

SMGHBM_2019_v29n4_395_t0003.png 이미지

Table 4. Effect of phthalates on sperm mitochondrial activity

SMGHBM_2019_v29n4_395_t0004.png 이미지

Table 5. Effect of phthalates on membrane integrity of sperm

SMGHBM_2019_v29n4_395_t0005.png 이미지

References

  1. Aggarwal, B. B., Sundaram, C., Malani, N, and Ichikawa, H. 2007. Curcumin: The Indian solid gold. Adv. Exp. Med. Biol. 595, 1-75.
  2. Albert, O. and Jegou, B. 2013. A critical assessment of the endocrine susceptibility of the human testis to phthalates from fetal life to adulthood. Hum. Reprod. Update 20, 231-249.
  3. Chanapiwat, T. and Kaeoket, K. 2015. The effect of curcuma longa extracted (curcumin) on the quality of cryopreserved boar semen. Anim. Sci. J. 86, 863-868.
  4. Choi, J. S. 2019. Analysis of toxicity in endometrial cells exposed phthalate. Kor. J. Clin. Lab. Sci. 51, 86-92. https://doi.org/10.15324/kjcls.2019.51.1.86
  5. Ciftci, O., Ozdemir, I., Tanyildizi, S., Yildiz, S. and Oguzturk, H. 2011. Antioxidative effects of curcumin, ${\beta}$-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rat liver. Toxicol. Ind. Health 27, 447-453. https://doi.org/10.1177/0748233710388452
  6. Colborn, T. 2004. Commentary: setting aside tradition when dealing with endocrine disruptors. ILAR J. 45, 394-400. https://doi.org/10.1093/ilar.45.4.394
  7. Du, L., Li, G., Liu, M., Li, Y., Yin, S., Zhao, J. and Zhang, X. 2015. Evaluation of DNA damage and antioxidant system induced by di-n-butyl phthalates exposure in earthworms (Eisenia fetida). Ecotoxicol. Environ. Saf. 115, 75-82. https://doi.org/10.1016/j.ecoenv.2015.01.031
  8. El-Bahr, S. M. 2013. Curcumin regulates gene expression of insulin like growth factor, B-cell CLL/lymphoma 2 and antioxidant enzymes in streptozotocin induced diabetic rats. BMC Complem. Altern. M. 13, 368-379. https://doi.org/10.1186/1472-6882-13-368
  9. Funahashi, H. and Sano, T. 2005. Select antioxidants improve the function of extended boar semen stored at 10 degrees C. Theriogenology 63, 1605-1616. https://doi.org/10.1016/j.theriogenology.2004.06.016
  10. Ghosh, S., Banerjee, S. and Sil, P. C. 2015. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem. Toxicol. 83, 111-124. https://doi.org/10.1016/j.fct.2015.05.022
  11. Gobbo, M. G., Costa, C. F., Silva, D. G., de Almeida, E. A. and Goes, R. M. 2015. Effect of melatonin intake on oxidative stress biomarkers in male reproductive organs of rats under experimental diabetes. Oxid. Med. Cell. Longev. doi: 10.1155/2015/614579. https://doi.org/10.1155/2015/614579
  12. Grande, S. W., Andrade, A. J., Talsness, C. E., Grote, K., Golombiewski, A., Sterner-Kock, A. and Chahoud, I. 2007. A dose-response study following in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): reproductive effects on adult female offspring rats. Toxicology 229, 114-122. https://doi.org/10.1016/j.tox.2006.10.005
  13. Hannon, P. R. and Flaws, J. A. 2015. The effects of phthalates on the ovary. Front. Endocrinol. doi: 10.3389/fendo.2015.00008. https://doi.org/10.3389/fendo.2015.00008
  14. He, Y., Yue, Y., Zheng, X., Zhang, K., Chen, S. and Du, Z. 2015. Curcumin, inflammation, and chronic diseases: how are they linked? Molecules 20, 9183-9213. https://doi.org/10.3390/molecules20059183
  15. Henley, D. V. and Korach, K. S. 2006. Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function. Endocrinology 147, 25-32. https://doi.org/10.1210/en.2005-1117
  16. Jekal, S. J., Park, M. S. and Kim, D. J. 2017. The combined effects of curcumin administration and 630 nm LED phototherapy against DNCB-induced atopic dermatitis-like skin lesions in BALB/c mice. Kor. J. Clin. Lab. Sci. 49, 150-160. https://doi.org/10.15324/kjcls.2017.49.2.150
  17. Kemal Duru, N., Morshedi, M. and Oehninger, S. 2000. Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa. Fertil. Steril. 74, 1200-1207. https://doi.org/10.1016/S0015-0282(00)01591-0
  18. Ko, E. Y., Sabanegh, E. S. Jr. and Agarwal, A. 2014. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil. Steril. 102, 1518-27. https://doi.org/10.1016/j.fertnstert.2014.10.020
  19. Kumar, P., Kumar, D., Sikka, P. and Singh, P. 2015. Sericin supplementation improves semen freezability of buffalo bulls by minimizing oxidative stress during cryopreservation. Anim. Reprod. Sci. 152, 26-31. https://doi.org/10.1016/j.anireprosci.2014.11.015
  20. Lee, Y. S., Lee, S. and Yang, B. K. 2018. Effects of bisphenol S on viability and reactive oxygen species of the sperm and ovarian granulosa cells in pigs. Ann. Anim. Resour. Sci. 29, 166-171. https://doi.org/10.12718/AARS.2018.29.4.166
  21. Lonare, M., Kumar, M., Raut, S., More, A., Doltade, S., Badgujar, P. and Telang, A. 2015. Evaluation of ameliorative effect of curcumin on imidacloprid-induced male reproductive toxicity in wistar rats. Environ. Toxicol. doi: 10.1002/tox.22132. https://doi.org/10.1002/tox.22132
  22. Maffini, M. V., Rubin, B. S., Sonnenschein, C. and Soto, A. M. 2006. Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol. Cell Endocrinol. 254-255, 179-186. https://doi.org/10.1016/j.mce.2006.04.033
  23. Martinez-Arguelles, D. B. and Papadopoulos, V. 2015. Mechanisms mediating environmental chemical-induced endocrine disruption in the adrenal gland. Front. Endocrinol. doi: 10.3389/fendo.2015.00029. https://doi.org/10.3389/fendo.2015.00029
  24. Muthumani, M. and Miltonprabu, S. 2015. Ameliorative efficacy of tetrahydrocurcumin against arsenic induced oxidative damage, dyslipidemia and hepatic mitochondrial toxicity in rats. Chem. Biol. Interact. 235, 95-105. https://doi.org/10.1016/j.cbi.2015.04.006
  25. Naz, R. K. and Lough, M. 2014. Curcumin as a potential non-steroidal contraceptive with spermicidal and microbicidal properties. Eur. J. Obstet. Gynecol. Reprod. Biol. 176, 142-148 https://doi.org/10.1016/j.ejogrb.2014.01.024
  26. Oguzturk, H., Ciftci, O., Aydin, M., Timurkaan, N., Beytur, A. and Yilmaz, F. 2012. Ameliorative effects of curcumin against acute cadmium toxicity on male reproductive system in rats. Andrologia 44, 243-249. https://doi.org/10.1111/j.1439-0272.2012.01273.x
  27. Patel, S., Zhou, C., Rattan, S. and Flaws, J. A. 2015. The Effects of Endocrine Disrupting Chemicals on the Ovary. Biol. Reprod. doi: 10.1095/biolreprod.115.130336. https://doi.org/10.1095/biolreprod.115.130336
  28. Pereira, C., Mapuskar, K. and Rao, C. V. 2006. Chronic toxicity of diethyl phthalate in male Wistar rats--a dose-response study. Regul. Toxicol. Pharmacol. 45, 169-177. https://doi.org/10.1016/j.yrtph.2006.04.006
  29. Rithaporn, T., Monga, M. and Rajasekaran, M. 2003. Curcumin: a potential vaginal contraceptive. Contraception 68, 219-223. https://doi.org/10.1016/S0010-7824(03)00163-X
  30. Sanocka, D. and Kurpisz, M. 2004. Reactive oxygen species and sperm cells. Reprod. Biol. Endocrinol. 2, 12. https://doi.org/10.1186/1477-7827-2-12
  31. Sariozkan, S., Bucak, M. N., Tuncer, P. B., Ulutas, P. A. and Bilgen, A. 2009. The influence of cysteine and taurine on microscopic-oxidative stress parameters and fertilizing ability of bull semen following cryopreservation. Cryobiology 58, 134-138. https://doi.org/10.1016/j.cryobiol.2008.11.006
  32. Schecter, A., Lorber, M., Guo, Y., Wu, Q., Yun, S. H., Kannan, K., Hommel, M., Imran, N., Hynan, L. S., Cheng, D., Colacino, J. A. and Birnbaum, L. S. 2013. Phthalate concentrations and dietary exposure from food purchased in New York State. Environ. Health Perspect. 121, 473-494. https://doi.org/10.1289/ehp.1206367
  33. Schug, T. T., Blawas, A. M., Gray, K., Heindel, J. J. and Lawler, C. P. 2015. Elucidating the Links between Endocrine Disruptors and Neurodevelopment. Endocrinology 156, 1941-1951. https://doi.org/10.1210/en.2014-1734
  34. Serrano, S. E., Braun, J., Trasande, L., Dills, R. and Sathyanarayana, S. 2014. Phthalates and diet: a review of the food monitoring and epidemiology data. Environ. Health. doi: 10.1186/1476-069X-13-43. https://doi.org/10.1186/1476-069X-13-43
  35. Shafiei, M., Forouzanfar, M., Hosseini, S. M. and Esfahani, M. H. 2015. The effect of superoxide dismutase mimetic and catalase on the quality of postthawed goat semen. Theriogenology 83, 1321-1327. https://doi.org/10.1016/j.theriogenology.2015.01.018
  36. Sharpe, R. M. 2006. Pathways of endocrine disruption during male sexual differentiation and masculinization. Best Pract. Res. Clin. Endocrinol. Metab. 20, 91-110. https://doi.org/10.1016/j.beem.2005.09.005
  37. Smith, C. A., Macdonald, A. and Holahan, M. R. 2011. Acute postnatal exposure to di (2- ethylhexyl) phthalate adversely impacts hippocampal development in the male rat. Neuroscience 193, 100-108. https://doi.org/10.1016/j.neuroscience.2011.06.082
  38. Tayyem, R. F., Heath, D. D., Al-Delaimy, W. K. and Rock, C. L. 2006. Curcumin content of turmeric and curry powders. Nutr. Cancer 55, 126-31. https://doi.org/10.1207/s15327914nc5502_2
  39. Tvrda, E., Kovacik, A., Tusimova, E., Massanyi, P. and Lukac, N. 2015. Resveratrol offers protection to oxidative stress induced by ferrous ascorbate in bovine spermatozoa. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 50, 1440-1451. https://doi.org/10.1080/10934529.2015.1071153
  40. Vallianou, N. G., Evangelopoulos, A., Schizas, N. and Kazazis, C. 2015. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res. 35, 645-651.
  41. Wittassek, M., Koch, H. M., Angerer, J. and Bruning, T. 2011. Assessing exposure to phthalates - The human biomonitoring approach. Mol. Nutr. Food Res. 55, 7-31. https://doi.org/10.1002/mnfr.201000121
  42. Zhang, J. F., Hu, Z. P., Lu, C. H., Yang, M. X., Zhang, L. L. and Wang, T. 2015. Dietary curcumin supplementation protects against heat-stress-impaired growth performance of broilers possibly through a mitochondrial pathway. J. Anim. Sci. 93, 1656-1665. https://doi.org/10.2527/jas.2014-8244