DOI QR코드

DOI QR Code

A Study on the Strength and Stiffness of Multi-Stage Cubic Truss Unit Structures

복합 입체형 정육면체 트러스 단위구조체의 강도 및 강성에 대한 해석 연구

Choi, Jeongho
최정호

  • Received : 2019.01.11
  • Accepted : 2019.04.20
  • Published : 2019.04.28

Abstract

This paper investigated the strength and stiffness of composite truss unit structures. The model used is a core-filled model combining the Kagome model and the cube truss model. The material properties used for the analysis are 304 stainless steel with elastic modulus of 193 GPa and yield stress of 215 MPa. The theoretical equation is derived from the relative elasticity relation of Gibson - Ashby ratio, the analysis was performed using Deform 3D, a commercial tool. In conclusion, the relative elasticity for this unit model correlates with 1.25 times the relative density and constant coefficient, elasticity is inversely proportional to pore size. The relative compressive strength has a correlation with relative density of 1.25 times. Proof of this is a real experiment, the derived theoretical relationship should further consider mechanical behavior such as bending and buckling. In the future, it is hoped that the research on the elasticity and the stress according to the structure of the three-dimensional space will be continued.

Keywords

Truss;Open Cell Structure;Hyper Cube;Sandwich Core;Unit cell

References

  1. L. Wang, K. Saito, Y. Gotou & Y. Okabe. (2017). Design and fabrication of aluminum honeycomb structures based on origami technology, Journal Sandwich and Materials, 0(00), 1-19. DOI : 10.1177/1099636217714646 https://doi.org/10.1177/1099636217714646
  2. K.P. Dharmasena,, H.N.G. Wadley, Z. Xue & J. W. Hutchinson. (2008). Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading, International Journal of Impact Engineering, 35, 1063-1074. DOI : 10.1016/j.ijimpeng.2007.06.008 https://doi.org/10.1016/j.ijimpeng.2007.06.008
  3. A. J. Wang & D. L. McDowell. (2004). In-plane stiffness and yield strength of periodic metal honeycombs, Journal of Engineering Materials and Technology, 126(2), 137-156. DOI : 10.1115/1.1646165 https://doi.org/10.1115/1.1646165
  4. J. Hwang. (2017). Application of seismic-sound Insulation Panel Using Kagome Truss Structure, Review of Architecture and Building Science, 61(3), 58-62. ISSN : 1225-1666
  5. M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson & J. W. Hutchinson, H.N.G. Wadley. (2002), Metal Foams: a design guide, Materials & Design, 23(1), 119. DOI : 10.1016/s0261-3069(01)00049-8 https://doi.org/10.1016/s0261-3069(01)00049-8
  6. L. J. Gibson & M. F. Ashby. (1999). Cellular Solids-Structure and Properties, Cambridge University Press. DOI : 10.1002/crat.2170250912
  7. L. J. Gibson, M. F. Ashby. & B. A. Harley. (2010), Cellular Materials in Nature and Medicine, Cambridge University Press. ISBN 978-0-521-19544-7 hardback
  8. Hexcel Corpporation. (2016), HexWeb Honeycomb Attributes and Propertioes. Technical manual [Online]. https://www.hexcel.com/Products/Honeycomb/
  9. R. Sterling. (2013). Periodic cellular materials. Technical manual [Online]. http://www.cellularmaterials.net/
  10. D. J. Sypeck & H. N. G. Wadley. (2001), Multifunctional microtruss laminates: Textile synthesis and properties, Journal of Materials Research, 16(3), 890-897. DOI : 10.1557/JMR.2001.0117 https://doi.org/10.1557/JMR.2001.0117
  11. D. J. Sypeck. (2002, February). Constructed cellular metals-Processing and properties of lightweight cellular metals and structures. proceedings of a symposium held during the 2002 TMS annual meeting in Seattle, Washington, (pp. 35-45). USA : TMS
  12. H. N. G. Wadley. (2006), Multifunctional periodic cellular metals, Philosophical Transactions of the Royal Society A, 364(1838), 31-68. DOI : 10.1098/rsta.2005.1697. https://doi.org/10.1098/rsta.2005.1697
  13. G. Zhang, B. Wang, L. Ma, J. Xiong & L. Wu. (2013), Response of sandwich structures with pyramidal truss cores under the compression and impact loading, Composite Structures, 100, 451-463. DOI : 10.1016/j.compstruct.2013.01.012 https://doi.org/10.1016/j.compstruct.2013.01.012
  14. M. R. M. Rejab & W. J. Cantwell. (2013), The mechanical behaviour of corrugated-core sandwich panels, Composites Part B: Engineering, 47, 267-277. DOI : 10.1016/j.compositesb.2012.10.031 https://doi.org/10.1016/j.compositesb.2012.10.031
  15. J. Choi & T. Chae. (2015), Effective stiffness and effective compressive yield strength for unit-cell model of complex truss, International Journal of Mechanics and Materials in Design, 11(1), 91-110. DOI : 10.1007/s10999-014-9267-9 https://doi.org/10.1007/s10999-014-9267-9
  16. G. Zhang, B. Wang, L. Ma, J. Xiong & L. Wu. (2013), Response of sandwich structures with pyramidal truss cores under the compression and impact loading, Composite Structures, 100, 451-463 . DOI : 10.1016/j.compstruct.2013.01.012 https://doi.org/10.1016/j.compstruct.2013.01.012
  17. T. L. Nguyen & D. Han. (2017) Texture Mapping of a Bridge Deck Usiing UAV Images. Journal of Digital Contents Society, 18(6), 1041-1047. DOI : 10.9728/dcs.2017.18.6.1041 https://doi.org/10.9728/dcs.2017.18.6.1041
  18. S. Bae1, D.Kwag & E. Park. (2015) The Study of the Aviation Industrial Technology Convergence through Patent analysis, Journal of the Korea Convergence Society, 6(5), 219-225 DOI : 10.15207/JKCS.2015.6.5.219 https://doi.org/10.15207/JKCS.2015.6.5.219
  19. J. Kim, S. Ha & Y. Moon. (2017) A Study on Automatic Precision Landing for Small UAV's, Industrial Application, 7(3), 27-36 DOI : 10.22156/CS4SMB.2017.7.3.027 https://doi.org/10.22156/CS4SMB.2017.7.3.027
  20. MatWeb. (2017). 304 stainless steel. Material Property Data. [Online] http://matweb.com/search/DataSheet.aspx?MatGUID=abc4415b0f8b490387e3c922237098da

Acknowledgement

Supported by : Kyungnam University