The Convergence Analysis of Microarray-Based Gene Expression by Difference of Culture Environment in Human Oral Epithelial Cells

구강상피세포의 배양환경의 차이에 의한 마이크로어레이 기반 유전자 발현의 융복합 분석

Son, Hwa-Kyung

  • Received : 2019.03.12
  • Accepted : 2019.04.20
  • Published : 2019.04.28


This study was analyzed about the relationship between culture microenvironment and cell differentiation of HPV 16 E6/E7-transfected immortalized oral keratinocyte(IHOK). By the alteration of culture environment, IHOK-EF and IHOK-EFKGM were obtained, and the modulation of cell properties was observed by cell proliferation assay, immunofluorescence, microarray, and quantitative real-time PCR analysis. IHOK-EF losed the properties of epithelial cells and obtained the properties of mesenchymal cells, and in the result of microarray analysis, genes related to the inhibition of differentiation such as IL6, TWIST1, and ID2 were highly expressed in IHOK-EF. When the culture environment was recovered to initial environment, these changes were recovered partially, presenting the return of genes involved in the inhibition of differentiation such as IL6, and ID2, particularly. This study will contribute to understand adjustment aspect for cell surviving according to the change of culture microenvironment in the study for determining the cell characteristic, and facilitate therapeutic approach for human disease by applying surviving study according to the change of cancer microenvironment.


Oral Keratinocyte;Microarray;Differentiation;Microenvironment;Convergence


  1. Y. L. Dorland & S. Huveneers. (2017). Cell-Cell junctional mechanotransduction in endothelial remodeling. Cell Mol Life Sci 74(2), 279-292. DOI: 10.1007/s00018-016-2325-8
  2. M. Arocena et al. (2019). Using a variant of coverslip hypoxia to visualize tumor cell alterations at increasing distances from an oxygen source. J Cell Physiol, 1-8. DOI: 10.1002/jcp.28507
  3. T. L. Lee. (2018). The Convergence effect of medical industry through stem cell implant treatment. Journal of Convergence for Information Technology, 8(2), 61-65. DOI: 10.22156/CS4SMB.2018.8.2.061
  4. Y. F. Wang et al. (2017). G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun 8(1), 274. DOI: 10.1038/s41467-017-00350-9
  5. H. K. Oh, E. Y. Do, H.R. Park. (2015). Convergence Studies of NO homeostasis in Cellualar Signalling. Journal of Digital Convergence, 13(12), 461-467. DOI : 10.14400/JDC.2015.13.12.461
  6. F. S. Varn, Y. Wang, D. W. Mullins, S. Fiering, C. Cheng. (2017). Systematic Pan-Cancer Analysis Reveals Immune Cell Interactions in the Tumor Microenvironment. Cancer Res, 77(6), 1271-1282. DOI: 10.1158/0008-5472.CAN-16-2490
  7. M. J. Oudin & V. M. Weaver. (2016). Physical and Chemical Gradients in the Tumor Microenvironment Regulate Tumor Cell Invasion, Migration, and Metastasis. Cold Spring Harb Symp Quant Biol, 81, 189-205. DOI: 10.1101/sqb.2016.81.030817
  8. S. Chandrasekaran, U. B. Giang, M. R. King & L. A. DeLouise. (2011). Microenvironment induced spheroid to sheeting transition of immortalized human keratinocytes (HaCaT) cultured in microbubbles formed in polydimethylsiloxane. Biomaterials, 32, 7159-7168. DOI: 10.1016/j.biomaterials.2011.06.013
  9. X. Luo, M. K. Ruhland, E. Pazolli, A. C. Lind & S. A. Stewart. (2011). Osteopontin stimulates preneoplastic cellular proliferation through activation of the MAPK pathway. Mol Cancer Res, 9, 1018-1029. DOI: 10.1158/1541-7786.MCR-10-0472
  10. J. G. Rheinwald & Green H. (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell, 6, 331-343.
  11. R. Takagi, M. Yamato, D. Murakami, H. Sugiyama & T. Okano. (2011). Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes. Biochem Biophys Res Commun, 412, 226-231. DOI: 10.1016/j.bbrc.2011.07.069
  12. J. J. Li, J. S. Rhim, R. Schlegel, K. H. Vousden & N. H. Colburn. (1998). Expression of dominant negative Jun inhibits elevated AP-1 and NF-kappaB transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes. Oncogene, 16, 2711-2721. DOI: 10.1038/sj.onc.1201798
  13. H. K. Son & J. Kim. (2012). Alteratiojn of epithelial properties by culture condition in HPV16 E6/E7-immortalized human oral keratinocytes. Kor J Oral Maxillofac Pathol, 36(6), 309-316.
  14. T. Tojima & E. Ito . (2004). Signal transduction cascades underlying de novo protein synthesis required for neuronal morphogenesis in differentiating neurons. Prog Neurobiol, 72, 183-193. DOI: 10.1016/j.pneurobio.2004.03.002
  15. L. Stephens, L. Milne & P. Hawkins. (2008). Moving towards a better understanding of chemotaxis. Curr Biol, 18, 485-494. DOI: 10.1016/j.cub.2008.04.048
  16. S. Ohashi1, M. Natsuizaka, S. Naganuma & S. Kagawa. (2011). A NOTCH3-Mediated Squamous Cell Differentiation Program Limits Expansion of EMT-Competent Cells That Express the ZEB Transcription Factors. Cancer Research, 71(21), 6836-47. DOI: 10.1158/0008-5472.CAN-11-0846.
  17. H. J. Lee et al. (2005). Effects of nicotine on proliferation, cell cycle, and differentiation in immortalized and malignant oral keratinocytes. J Oral Pathol Med, 34, 436-443. DOI: 10.1111/j.1600-0714.2005.00342.x
  18. R. P. Illeperuma et al. (2011). Immortalized gingival fibroblasts as a cytotoxicity test model for dental materials. J Mater Sci Mater Med., 23(3), 753-62. DOI: 10.1007/s10856-011-4473-6
  19. J. Sakamoto et al. (1989). Alteration of phenotype, morphology and drug sensitivity in colon cancer cell lines under various culture conditions. Gan to Kagaku Ryoho Cancer Chemotherapy, 16, 1864-1873.
  20. F. Boraldi, G. Annovi, C. Paolinelli-Devincenzi, R. Tiozzo & D. Quaglino. (2008). The effect of serum withdrawal on the protein profile of quiescent human dermal fibroblasts in primary cell culture. Proteomics, 8, 66-82. DOI: 10.1002/pmic.200700833
  21. K. Lorenz, T. Rupf, J. Salvette & A. Bader. (2009). Enrichment of human beta 1 bri/alpha 6 bri/CD71 dim keratinocytes after culture in defined media. Cells Tissues Organs, 189, 382-390. DOI: 10.1159/000151291
  22. X. Han, A. J. Papadopoulos, T. Jones, O. Devaja & Raju KS. (1999). Cholera toxin-induced alteration of the phenotype and behaviour of an ovarian carcinoma cell line, SR8. Immunol Cell Biol, 77, 377-384. DOI: 10.1046/j.1440-1711.1999.00840.x
  23. N. Morinaga, Y. Kaihou, N. Vitale, J. Moss & M. Noda. (2001). Involvement of ADP-ribosylation factor 1 in cholera toxin-induced morphological changes of Chinese hamster ovary cells. Journal of Biological Chemistry, 276(25), 22838-22843. DOI: 10.1074/jbc.M101184200
  24. T. J. Shaw, E. J. Keszthelyi, A. M. Tonary, M. Cada, B. C. Vanderhyden. (2002). Cyclic AMP in ovarian cancer cells both inhibits proliferation and increases c-KIT expression. Exp Cell Res, 273(1), 95-106. DOI: 10.1006/excr.2001.5426
  25. J. Viallet, Y. Sharoni, H. Frucht, R. T. Jensen, J. D. Minna, E. A. Sausville. (1990). Cholera toxin inhibits signal transduction by several mitogens and the in vitro growth of human small-cell lung cancer. J Clin Invest, 86(6), 1904-12. DOI: 10.1172/JCI114923
  26. Y. Li, W. Yin, X. Wang, W. Zhu, Y. Huang, G. Yan. (2007). Cholera toxin induces malignant glioma cell differentiation via the PKA/CREB pathway. Proc Natl Acad Sci U S A., 104(33), 13438-43. DOI: 10.1073/pnas.0701990104
  27. Y. U. Kamata, T. Sumida, Y. Kobayashi, A. Ishikawa, W. Kumamaru & Mori Y. (2016). Introduction of ID2 Enhances Invasiveness in ID2-null Oral Squamous Cell Carcinoma Cells via the SNAIL Axis. Cancer Genomics & Proteomics., 13(6), 493-497.
  28. N, J. Sullivan et al. (2009). Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene, 33, 2940-7. DOI: 10.1038/onc.
  29. J. Meng et al. (2018). Twist1 Regulates Vimentin through Cul2 Circular RNA to Promote EMT in Hepatocellular Carcinoma. Cancer Research,. 15, 4150-4162. DOI: 10.1158/0008-5472.CAN-17-3009.


Supported by : Yeungnam University College