DOI QR코드

DOI QR Code

Fabrication of enzymatic biosensor based on the poly(3-thiophenecarboxylic acid-co-thiophene) polymer as electron-transfer materials

  • Kim, Soo-Yeoun (Department of Health Cosmetic Science, Dongduk Women's University) ;
  • Jo, Hyeon-Jin (Department of Chemistry, Hannam University) ;
  • Choi, Seong-Ho (Department of Chemistry, Hannam University)
  • Received : 2019.01.28
  • Accepted : 2019.03.29
  • Published : 2019.03.31

Abstract

We fabricated glucose oxidase (GOx)-modified biosensor for detection of glucose by physical immobilization of GOx after electrochemical polymerization of the conductive mixture monomers of the 3-thiophenecarboxylic acid (TCA) and thiophene (Th) onto ITO electrode in this study. We confirmed the successfully fabrication of GOx-modified biosensor via FT-IR spectroscopy, SEM, contact angle, and cyclic voltammetry. The fabricated biosensor has the detection limit of $0.1{\mu}M$, the linearity of 0.001-27 mM, and sensitivity of $38.75mAM^{-1}cm^{-2}$, respectively. The fabricated biosensor exhibits high interference effects to dopamine, ascorbic acid, and L-cysteine, respectively. From these results, the fabricated GOx-modified biosensor with long linearity and high sensitivity could be used as glucose sensor in human blood sample.

HGOHBI_2019_v36n1_269_f0001.png 이미지

Fig. 1. Preparation of GOx-midified biosensor based on poly(3-thiophenecarboxylic acid, TCA), poly(thiophene, TCA), and poly(TCA-co-Th).

HGOHBI_2019_v36n1_269_f0002.png 이미지

Fig. 2. Electrochemical polymerization of the TCA, Th and the mixture of TCA/Th in acetonitrile with 10mM[N(Bu)4]+[BF4]- at scan rate 0.075V/S(see, Table 1).

HGOHBI_2019_v36n1_269_f0003.png 이미지

Fig. 3. Electrochemical polymerization mechanism of thiophene derivatives in acetonitrile with 10mM [NCH3CH2CH2CH2]+[BF4]- as electrolyte at scan rate 75mV/s.

HGOHBI_2019_v36n1_269_f0004.png 이미지

Fig. 4. Contact angles of bare ITO, No. 1, 2, 3, 4 and 5 (see, Table 1).

HGOHBI_2019_v36n1_269_f0005.png 이미지

Fig. 5. FT-IR spectra of No. 1, No. 2 and No. 4 (see, Table 1).

HGOHBI_2019_v36n1_269_f0007.png 이미지

Fig. 6. Cross-section SEM images of poly(TCA-co-Th)/ITO electrode (see, Table 1).

HGOHBI_2019_v36n1_269_f0008.png 이미지

Fig. 7. Cyclic voltammograms of 1mM K3Fe (CN) 6 and K4Fe (CN) 6 (1/1, mol-%) using poly(TCA), poly(Th), and poly(TCA-co-Th)-modified ITO electrode in 0.1M KCl.

HGOHBI_2019_v36n1_269_f0009.png 이미지

Fig. 8. Cyclic voltammograms of glucose in 0.1 M PBS (pH 6.8) using GOx-modified biosensor (No. 4) at a scan rate of 100 mV/s.

HGOHBI_2019_v36n1_269_f0010.png 이미지

Fig. 9. Chronoamperometry electrochemical response according to glucose concentration using GOx biosensor (No. 5) in 0.1 M PBS solution at a -0.175 V potential.

Table 1. Electrochemical polymerization condition of the TCA, Th, and the mixture of TCA/Th a)

HGOHBI_2019_v36n1_269_t0001.png 이미지

Table 2. Interference effect of various compounds on the assay of glucose using GOx-modified biosensor (No. 4)

HGOHBI_2019_v36n1_269_t0002.png 이미지

Table 3. Comparison of the reported glucose biosensors

HGOHBI_2019_v36n1_269_t0003.png 이미지

Acknowledgement

Supported by : Hannam University

References

  1. E. D. Doucette, J. Salas, J. Wang, J. F. Scherrer, "Insurance coverage and diabetes quality indicators among patients with diabetes in the US general population", Primary Care Diabetes, Vol. 11, No. 6, pp. 515-521, (2017). https://doi.org/10.1016/j.pcd.2017.05.007
  2. R. Manoharan, Y. Wang, M. S. Feld, "Histochemical analysis of biological tissues using Raman spectroscopy", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 52, N. 2, pp. 215-249, (1996). https://doi.org/10.1016/0584-8539(95)01573-6
  3. G. P. Parpinello, A. Versari, "A simple high-performance liquid chromatography method for the analysis of glucose, glycerol, and methanol in a bioprocess", Journal of chromatographic science,Vol. 38, pp. 259-261, (2000). https://doi.org/10.1093/chromsci/38.6.259
  4. D. C. Klonoff, "Overview of fluorescence glucose sensing: a technology with a bright future", Journal of diabetes science and technology, Vol. 6, pp. 1242-1250, (2012). https://doi.org/10.1177/193229681200600602
  5. E.-Y. Jung, J.-H. Ye, S.-H. Jung, S.-H. Choi, "Electrochemiluminescence Biosensor Based on Thioglycolic Acid-Capped CdSe QDs for Sensing Glucose" Journal of Nanomaterials, Vol. 2016, pp. 9-14, (2016).
  6. S. Ferri, K. Kojima, K. Sode, "Review of glucose oxidases and glucose dehydrogenases: a bird's eye view of glucose sensing enzymes", Journal of diabetes science and technology,Vol. 5, pp. 1068-1076, (2011). https://doi.org/10.1177/193229681100500507
  7. P. De Taxis Du Poet, S. Miyamoto, T. Murakami, J. Kimura, I. Karube, "Direct electron transfer with glucose oxidase immobilized in an electropolymerized poly (N-methylpyrrole) film on a gold microelectrode", Analytica Chimica Acta, Vol. 235, pp. 255-263, (1990). https://doi.org/10.1016/S0003-2670(00)82082-6
  8. J. M. Robbins, M. G. Souffrant, D. Hamelberg, G. Gadda, A. S. Bommarius, "Enzyme-Mediated Conversion of Flavin Adenine Dinucleotide (FAD) to 8-Formyl FAD in Formate Oxidase Results in a Modified Cofactor with Enhanced Catalytic Properties" Biochemistry, Vol. 56, pp. 3800-3807, (2017). https://doi.org/10.1021/acs.biochem.7b00335
  9. Y. Yin, Y. Lu, P. Wu, C. Cai, "Direct Electrochemistry of Redox Proteins and Enzymes Promoted by Carbon Nanotubes", Sensors, Vol. 5, pp. 220-234,(2005). https://doi.org/10.3390/s5040220
  10. P. S. Sharma, A. Pietrzyk-Le, F. D'Souza, W. Kutner, "Electrochemically synthesized polymers in molecular imprinting for chemical sensing",Analytical and bioanalytical chemistry, Vol. 402, pp. 3177-3204, (2012). https://doi.org/10.1007/s00216-011-5696-6
  11. A. Laforgue, P. Simon, C. Sarrazin, J.-F. Fauvarque, "Polythiophene-based supercapacitors", Journal of Power Sources, Vol. 80, pp. 142-148, (1999). https://doi.org/10.1016/S0378-7753(98)00258-4
  12. M.G. Vivas, S.L. Nogueira, H.S. Silva, N.M. Barbosa Neto, A. Marletta, F. Serein-Spirau, S. Lois, T. Jarrosson, L. De Boni, R.A. Silva, " Linear and Nonlinear Optical Properties of the Thiophene/Phenylene-Based Oligomer and Polymer"The Journal of Physical Chemistry B, Vol. 115, pp. 12687-12693,(2011). https://doi.org/10.1021/jp203194t
  13. J. Pei, W.-L. Yu, W. Huang, A.J. Heeger, "A Novel Series of Efficient Thiophene-Based Light-Emitting Conjugated Polymers and Application in Polymer Light-Emitting Diodes", Macromolecules, Vol. 33, pp. 2462-2471, (2000). https://doi.org/10.1021/ma9914220
  14. M.E. Nicho, H. Hu, C. Lopez-Mata, J. Escalante, "Synthesis of derivatives of polythiophene and their application in an electrochromic device", Solar Energy Materials and Solar Cells, Vol. 82, pp. 105-118, (2004). https://doi.org/10.1016/j.solmat.2004.01.009
  15. X. Hu, J.A. Lawrence, J. Mullahoo, Z.C. Smith, D.J. Wilson, C.R. Mace, S.W. Thomas, "Directly Photopatternable Polythiophene as Dual-Tone Photoresist", Macromolecules, Vol. 50, pp. 7258-7267, (2017). https://doi.org/10.1021/acs.macromol.7b01208
  16. F. Jonas, L. Schrader, "Conductive modifications of polymers with polypyrroles and polythiophenes", Synthetic Metals, Vol. 41, pp. 831-836, (1991). https://doi.org/10.1016/0379-6779(91)91506-6
  17. C. Li, G. Shi, "Polythiophene-Based Optical Sensors for Small Molecules", ACS Applied Materials & Interfaces, Vol. 5, pp. 4503-4510, (2013). https://doi.org/10.1021/am400009d
  18. B. Oschmann, J. Park, C. Kim, K. Char, Y.-E. Sung, R. Zentel, "Copolymerization of Polythiophene and Sulfur To Improve the Electrochemical Performance in Lithium-Sulfur Batteries",Chemistry of Materials, Vol. 27, pp. 7011-7017, (2015). https://doi.org/10.1021/acs.chemmater.5b02317
  19. M.A. Dar, K. Majid, M. Hanief Najar, R.K. Kotnala, J. Shah, S.K. Dhawan, M. Farukh, "Surfactant-assisted synthesis of polythiophene/Ni0.5Zn0.5Fe2-xCexO4 ferrite composites: study of structural, dielectric and magnetic properties for EMI-shielding applications", Physical Chemistry Chemical Physics, Vol. 19, pp. 10629-10643, (2017). https://doi.org/10.1039/C7CP00414A
  20. F. Pierini, M. Lanzi, P. Nakielski, S. Pawlowska, O. Urbanek, K. Zembrzycki, T.A. Kowalewski, 'Single-Material Organic Solar Cells Based on Electrospun Fullerene-Grafted Polythiophene Nanofibers", Macromolecules, Vol. 50, pp. 4972-4981, (2017). https://doi.org/10.1021/acs.macromol.7b00857
  21. Y. Li, Y. Shen, "Polythiophene-based materials for nonvolatile polymeric memory devices', Polymer Engineering & Science, Vol. 54, pp. 2470-2488, (2014). https://doi.org/10.1002/pen.23800
  22. P. Liu, Y. Wu, H. Pan, B.S. Ong, S. Zhu, "High-Performance Polythiophene Thin-Film Transistors Processed with Environmentally Benign Solvent", Macromolecules, Vol. 43, pp. 6368-6373, (2010). https://doi.org/10.1021/ma100212h
  23. H. Wu, J. Wang, X. Kang, C. Wang, D. Wang, J. Liu, I.A. Aksay, Y. Lin, "Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film" Talanta, Vol. 80, pp. 403-406, (2009). https://doi.org/10.1016/j.talanta.2009.06.054
  24. Z. Zeng, X. Zhou, X. Huang, Z. Wang, Y. Yang, Q. Zhang, F. Boey, H. Zhang, " Electrochemical deposition of Pt nanoparticles on carbon nanotube patterns for glucose detection", Analyst, Vol. 135, pp. 1726-1730, (2010). https://doi.org/10.1039/c000316f
  25. H. Li, J. He, Y. Zhao, D. Wu, Y. Cai, Q. Wei, M. Yang, "Immobilization of glucose oxidase and platinum on mesoporous silica nanoparticles for the fabrication of glucose biosensor", Electrochimica Acta, Vol. 56, pp. 2960-2965, (2011). https://doi.org/10.1016/j.electacta.2010.12.098
  26. X. Han, Y. Zhu, X. Yang, J. Zhang, C. Li, "Dendrimer-encapsulated Pt nanoparticles on mesoporous silica for glucose detection" Journal of Solid State Electrochemistry, Vol. 15, pp. 511-517, (2011). https://doi.org/10.1007/s10008-010-1121-x
  27. X. Jiang, Y. Wu, X. Mao, X. Cui, L. Zhu, "Amperometric glucose biosensor based on integration of glucose oxidase with platinum nanoparticles/ordered mesoporous carbon nanocomposite" Sensors and Actuators B: Chemical, Vol. 153, pp. 158-163, (2011). https://doi.org/10.1016/j.snb.2010.10.023