DOI QR코드

DOI QR Code

Morphology-Controlled WO3 and WS2 Nanocrystals for Improved Cycling Performance of Lithium Ion Batteries

  • Lim, Young Rok (Department of Chemistry, Korea University) ;
  • Ko, Yunseok (Department of Chemistry, Korea University) ;
  • Park, Jeunghee (Department of Chemistry, Korea University) ;
  • Cho, Won Il (Center for Energy convergence, Korea Institute of Science and Technology) ;
  • Lim, Soo A (Dept. of Pharmaceutical Engineering, Hoseo University) ;
  • Cha, EunHee (Dept. of Pharmaceutical Engineering, Hoseo University)
  • Received : 2018.08.23
  • Accepted : 2018.10.01
  • Published : 2019.03.31

Abstract

As a promising candidate for anode materials in lithium ion battery (LIB), tungsten trioxide ($WO_3$) and tungsten disulfide ($WS_2$) nanocrystals were synthesized, and their electrochemical properties were comprehensibly studied using a half cell. One-dimensional $WO_3$ nanowires with uniform diameter of 10 nm were synthesized by hydrothermal method, and two-dimensional (2D) $WS_2$ nanosheets by unique gas phase sulfurization of $WO_3$ using $H_2S$. $WS_2$ nanosheets exhibits uniformly 10 nm thickness. The $WO_3$ nanowires and $WS_2$ nanosheets showed maximum capacities of 552 and $633mA\;h\;g^{-1}$, respectively, after 100 cycles. Especially, the capacity of $WS_2$ is significantly larger than the theoretical capacity ($433mA\;h\;g^{-1}$). We also examined the cycling performance using a larger size $WO_3$ and $WS_2$ nanocrystals, showing that the smaller size plays an important role in enhancing the capacity of LIBs. The larger capacity of $WS_2$ nanosheets than the theoretical value is ascribed to the lower charge transfer resistance of 2D nanostructures.

E1JTC5_2019_v10n1_89_f0001.png 이미지

Fig. 1. XRD pattern of WO3 (WO-1 and WO-2) and WS2 (WS-1 and WS-2) nanocrystals. The peaks matched those of monoclinic phase WO3 (JCPDS No. 72-1048) and hexagonal phase WS2 (JCPDS No. 84-1398).

E1JTC5_2019_v10n1_89_f0002.png 이미지

Fig. 2. SEM and TEM images showing the general morphology of (a) WO-1, (b) WO-2 (c) WS-1, and (d) WS-2. High-resolution TEM and corresponding FFT images reveal that the distance between the adjacent (010) planes (d020) is 3.8 Å for monoclinic phase WO3 nanocrystals and d010 is 2.7 Å for hexagonal phase WS2 nanosheets. EDX spectrum shows the composition of (e) WO3 (WO-2) and (f) WS2 (WS-2).

E1JTC5_2019_v10n1_89_f0003.png 이미지

Fig. 3. Cyclic voltammetry curve of (a) WO-1 and (b) WO-2. (c) Charge and discharge voltage profiles of LIB half-cell using WO-1, tested between 0.01 and 3 V, at a rate of 0.1 C. (d) Charge/discharge capacity vs. cycle number for half cells using WO-1 and WO-2. The coulomb efficiency is plotted using the right axis. (e) Charge and discharge voltage profiles of LIB half-cell using WO-2, tested between 0.01 and 3 V, at a rate of 0.1 C. (f) Cycling performance of WO-1 and WO-2 as the C-rate is increased from 0.1 C to 5.0 C.

E1JTC5_2019_v10n1_89_f0004.png 이미지

Fig. 4. Nyquist plots of (a) WO-1 and WO-2; (b) WS-1 and (b) WS-2, before the cycle of LIB. The equivalent circuit diagram is shown on the right.

E1JTC5_2019_v10n1_89_f0005.png 이미지

Fig. 5. Cyclic voltammetry curve of (a) WS-1 and (b) WS-2. Charge and discharge voltage profiles of LIB half-cell using (c) WS-1, tested between 0.01 and 3 V, at a rate of 0.1 C. (d) Charge/discharge capacity vs. cycle number for half cells using WS-1 and WS-2. The coulomb efficiency is plotted using the right axis. (e) Charge and discharge voltage profiles of LIB half-cell using WS-2, tested between 0.01 and 3 V, at a rate of 0.1 C. (f) Cycling performance of WS-1 and WS-2, as the C-rate is increased from 0.1 C to 5.0 C.

Table 1. Summary of LIB half-cell capacities (mA h g-1) of WO3 and WS2 nanocrystals during cycles at a rate of 0.1C.

E1JTC5_2019_v10n1_89_t0001.png 이미지

Table 2. Summary of the LIB half-cell capacities (mA h g-1) of WO3 and WS2 nanocrystals as the rate is increased from 0.1 C to 5.0 C.

E1JTC5_2019_v10n1_89_t0002.png 이미지

Acknowledgement

Supported by : Hoseo University

References

  1. JM.Tarascon and M. Armand, Nature, 2001, 414, 359-367. https://doi.org/10.1038/35104644
  2. B. Dunn, H. Kamath and J. M. Tarascon, Science, 2011, 334(6058), 928-935. https://doi.org/10.1126/science.1212741
  3. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 2011, 4(9), 3243-3262. https://doi.org/10.1039/c1ee01598b
  4. M. S. Whittingham, Chem. Rev. 2014, 114(23), 11414-11443. https://doi.org/10.1021/cr5003003
  5. X. Xu, W. Liu, Y. Kim, and J. Cho, Nano Today, 2014, 9(5), 604-630. https://doi.org/10.1016/j.nantod.2014.09.005
  6. X. Hu, W. Zhang, X. Liu, Y. Mei and Y. Huang, Chem. Soc. Rev., 2015, 44(8), 2376-2404. https://doi.org/10.1039/C4CS00350K
  7. S. H. Yu, S. H. Lee, D. J. Lee, Y. E. Sung and T. Hyeon, Small, 2016, 12(16), 2146-2172. https://doi.org/10.1002/smll.201502299
  8. X. Cao, C. Tan, X. Zhang, W. Zhao and H. Zhang, Adv. Mater., 2016, 28(29), 6167-6196. https://doi.org/10.1002/adma.201504833
  9. L. Wang, S. Yue, Q. Zhang, Y. Zhang, Y. R. Li, C. S. Lewis, K. J. Takeuchi, A. C. Marschilok, E. S. Takeuchi and S. S. Wong, ACS Energy Lett., 2017, 2(6),1465-1478 https://doi.org/10.1021/acsenergylett.7b00222
  10. W. -J. Li and Z. -W. Fu, Appl. Surf. Sci., 2010, 256(8), 2447-2452. https://doi.org/10.1016/j.apsusc.2009.10.085
  11. Y. Qiu, G. -L. Xu, Q. Kuang, S. -G. Sun and S. Yang, Nano Res., 2012, 5(11), 826-832. https://doi.org/10.1007/s12274-012-0266-6
  12. S. Yoon, S. -G. Woo, K. -N. Jung and H. Song, J. Alloys. Comp., 2014, 613, 187-192. https://doi.org/10.1016/j.jallcom.2014.06.010
  13. Y. Liu, Y. Jiao, H. Zhou, X. Yu, F. Qu and X. Wu, Nano-Micro Lett., 2015, 7(1), 12-16. https://doi.org/10.1007/s40820-014-0013-5
  14. Y. Sun, W. Wang, J. Qin, D. Zhao, B. Mao, Y. Xiao and M. Cao, Electrochim. Acta, 2016, 187, 329-339. https://doi.org/10.1016/j.electacta.2015.11.064
  15. H. Tong, Y. Xu, X. Cheng, X. Zhang, S. Gao, H. Zhao and L. Huo, Electrochim. Acta, 2016, 210, 147-154. https://doi.org/10.1016/j.electacta.2016.05.154
  16. X. Gu, F. Wu, B. Lei, J. Wang, Z. Chen, K. Xie, Y. Song, D. Sun, L. Sun, H. Zhou, and F. Fang, J. Power Sources, 2016, 320, 231-238. https://doi.org/10.1016/j.jpowsour.2016.04.103
  17. J. Xu, Y. Li, L. Wang, Q. Cai, Q. Li, B. Gao, X. Zhang, K. Huo and P. K. Chu, Nanoscale, 2016, 8(37), 16761-16768. https://doi.org/10.1039/C6NR05480C
  18. Z. Liu, P. Li, Y. Dong, Q. Wan, F. Zhai, A. A. Volinsky and X. Qu, Appl. Surf. Sci., 2017, 394, 70-77. https://doi.org/10.1016/j.apsusc.2016.10.107
  19. X. Wu and S. Yao, Nano Energy, 2017, 42, 143-150. https://doi.org/10.1016/j.nanoen.2017.10.058
  20. K. Bao, W. Mao, G. Liu, L. Ye, H. Xie, S. Ji, D. Wang, C. Chen and Y. Li, Nano Res., 2017, 10(6), 1903-1911. https://doi.org/10.1007/s12274-016-1373-6
  21. G. X. Wang, S. Bewlay, J. Yao, H. K. Liu and S. X. Dou, Electrochem. Solid-State Lett., 2004, 7(10), A321-A323. https://doi.org/10.1149/1.1788591
  22. K. Shiva, H. S. S. R. Matte, H. B. Rajendra, A. J. Bhattacharyya and C. N. R. Rao, Nano Energy, 2013, 2(5), 787-793. https://doi.org/10.1016/j.nanoen.2013.02.001
  23. D. Chen, G. Ji, B. Ding, Y. Ma, B. Qu, W. Chen and J. Y. Lee, Nanoscale, 2013, 5(17), 7890-7896. https://doi.org/10.1039/c3nr02920d
  24. X. Xu, C. S Rout, J. Yang, R. Cao, P. Oh, H. S. Shin and J. Cho, J. Mater. Chem. A, 2013, 1(46), 14548-14554. https://doi.org/10.1039/c3ta13329j
  25. Y. Liu, W. Wang, Y. Wang and X. Peng, Nano Energy, 2014, 7, 25-32. https://doi.org/10.1016/j.nanoen.2014.04.018
  26. R. Chen, T. Zhao, W. Wu, F. Wu, L. Li, J. Qian, R. Xu, H. Wu, H. M. Albishri, A. S. Al-Bogami, D. A. El-Hady, J. Lu and K. Amine, Nano Lett., 2014, 14(10), 5899-5904. https://doi.org/10.1021/nl502848z
  27. Z. Q. Duan, Y. C. Sun, Y. T. Liu, X. M. Xie and X. D. Zhu, RSC Adv., 2014, 4, 41543-41550. https://doi.org/10.1039/C4RA05640J
  28. W. Lv, J. Xiang, F. Wen, Z. Jia, R. Yang, B. Xu, D. Yu, J. He and Z. Liu, Electrochim. Acta, 2015, 153, 49-54. https://doi.org/10.1016/j.electacta.2014.11.098
  29. W. Yang, J. Wang, C. Si, Z. Peng, J. Frenzel, G. Eggeler and Z. Zhang, J. Mater. Chem. A, 2015, 3(34), 17811-17819. https://doi.org/10.1039/C5TA04176G
  30. Y. Du, X. Zhu, L. Si, Y. Li, X. Zhou and J. Bao, J. Phys. Chem. C, 2015, 119(238), 15874-15881. https://doi.org/10.1021/acs.jpcc.5b03540
  31. H. Li, K. Yu, H. Fu, B. Guo, X. Lei and Z. Zhu, Phys. Chem. Chem. Phys., 2015, 17(44), 29824-29833. https://doi.org/10.1039/C5CP04081G
  32. X. Zeng, Z. Ding, C. Ma, L. Wu, J. Liu, L. Chen, D. G. Ivey and W. Wei, ACS Appl. Mater. Interfaces, 2016, 8(29), 18841-18848. https://doi.org/10.1021/acsami.6b04770
  33. Y. Wang, D. Kong, W. Shi, B. Liu, G. J. Sim, Q. Ge and H. Y. Yang, Adv. Energy Mater., 2016, 6(21), 1601057. https://doi.org/10.1002/aenm.201601057
  34. L. Zhou, S. Yan, L. Pan, X. Wang, Y. Wang and Y. Shi, Nano Res., 2016, 9(3), 857-865. https://doi.org/10.1007/s12274-015-0966-9
  35. L. Zhang, W. Fan and T. Liu, Nanoscale, 2016, 8(36), 16387-16394. https://doi.org/10.1039/C6NR04241D
  36. S. Liu, B. Shen, Y. Niu and M. Xu, J. Colloid. Interface Sci., 2017, 488, 20-25. https://doi.org/10.1016/j.jcis.2016.10.083