Electrochemical Studies on Corrosion Inhibition Behaviour of Synthesised 2-acetylpyridine 4-ethyl-3-thiosemicarbazone and Its Tin(IV) Complex for Mild Steel in 1 M HCl Solution

  • Received : 2018.07.05
  • Accepted : 2018.09.03
  • Published : 2019.03.31


Corrosion inhibition by synthesised ligand, 2-acetylpyridine 4-ethyl-3-thiosemicarbazone (HAcETSc) and its tin(IV) complex, dichlorobutyltin(IV) 2-acetylpyridine 4-ethyl-3-thiosemicarbazone ($Sn(HAcETSc)BuCl_2$) on mild steel in 1 M hydrochloric acid (HCl) was studied using weight loss measurement, potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The inhibition efficiency increases by increasing the inhibitor concentrations. The polarisation study showed that both synthesised compounds were mixed type inhibitors. The electrochemical impedance study showed that the presence of inhibitors caused the charge transfer resistance to increase as the concentration of inhibitors increased. The adsorption of these compounds on mild steel surface was found to obey Langmuir's adsorption isotherm with the free energy of adsorption ${\Delta}G{^o}_{ads}$ of -3.7 kJ/mol and -7.7 kJ/mol for ligand and complex respectively, indicating physisorption interaction between the inhibitors and 1 M HCl solution.

E1JTC5_2019_v10n1_29_f0001.png 이미지

Fig. 1. Inhibition efficiency of HAcETSc and Sn(HAcETSc)BuCl2.

E1JTC5_2019_v10n1_29_f0002.png 이미지

Fig. 2 Tafel plots of mild steel with various concentrations of (a) HAcETSc and (b) Sn(HAcETSc)BuCl2

E1JTC5_2019_v10n1_29_f0003.png 이미지

Fig. 3. Nyquist diagram for mild steel immersed for ten minutes in various concentrations of HAcETSc and Sn(HAcETSc)BuCl2.

E1JTC5_2019_v10n1_29_f0004.png 이미지

Fig. 4. Electric equivalent circuit of the metal / inhibitors / HCl.

E1JTC5_2019_v10n1_29_f0005.png 이미지

Fig. 5 SEM images of (a) uninhibited mild steel [blank] (b) mild steel inhibited with HAcETSc, and (c) mild steel inhibited with Sn(HAcETSc)BuCl2.

E1JTC5_2019_v10n1_29_f0006.png 이미지

Fig. 6. Langmuir isotherm for the adsorption of both inhibitors.

Table 1 Inhibitors under investigation

E1JTC5_2019_v10n1_29_t0001.png 이미지

Table 2 Corrosion inhibition data by weight loss method

E1JTC5_2019_v10n1_29_t0002.png 이미지

Table 3. Polarisation parameter values.

E1JTC5_2019_v10n1_29_t0003.png 이미지

Table 4. Impedance parameter values.

E1JTC5_2019_v10n1_29_t0004.png 이미지


Supported by : Ministry of Higher Education


  1. B. E. A. Rani and B. B. J. Basu, Int. J. Corros., 2012, 2012, 1-15.
  2. P. B. Raja, M. Ismail, S. Ghoreishiamiri, J. Mirza, M. C. Ismail, S. Kakooei, and A. A. Rahim, Chem. Eng. Commun., 2016, 203(9), 1145-1156.
  3. M. Rajendran, A. Malkiya, P. Muthupetchi, and D. Devapiriam, J. Adv. Sci. Res., 2016, 7(1), 32-37.
  4. R. B. Rastogi, M. M. Singh, K. Singh, and M. Yadav, African J. Pure Appl. Chem., 2011, 5(2), 19-33.
  5. H. Keles, D. M. Emir, and M. Keles, Corros. Sci., 2015, 101, 19-31.
  6. R. B. Rastogi, K. Singh, and J. L. Maurya, Synth. React. Inorg. Met. -Org. Nano-Metal Chem., 2012, 42(4), 616-620.
  7. H. Kurniasih, M. Nurissalam, B. Iswantoro, H. Afriyani, H. I. Qudus, and S. Hadi, Orient. J. Chem., 2015, 31(4), 2377-2383.
  8. S. Hadi, H. Afriyani, D. W. Anggraini, I. H. Qudus, and T. Suhartati, Asian J. Chem., 2015, 27(4), 1509-1512.
  9. M. Muralisankar, R. Sreedharan, and S. Sujith, J. Alloys Compd., 2017, 695, 171-182.
  10. N. Z. Nor Hashim, K. Kassim, and Y. Mohd, Adv. Mater. Res., 2012, 554, 408-413.
  11. P. Aby, T. K. Joby, P. R. Vinod, and K. S. Shaju, IOSR J. Appl. Chem., 2012, 1(6), 17-23.
  12. A. Ehsani, R. Moshrefi, and M. Ahmadi, J. Electrochem. Sci. Technol., 2015, 6(1), 7-15.
  13. B. Adindu, C. Ogukwe, F. Eze, and E. Oguzie, J. Electrochem. Sci. Technol., 2016, 7(4), 251-262.
  14. K. Kassim, N. K. M. Kamal, and A. H. Fadzil, Malaysian J. Anal. Sci., 2016, 20(6), 1311-1317.
  15. B. Xu, W. Yang, Y. Liu, X. Yin, W. Gong, and Y. Chen, Corros. Sci., 2014, 78, 260-268.
  16. I. Danaee, N. Bahramipanah, S. Moradi, and S. Nikmanesh, J. Electrochem. Sci. Technol., 2016, 7(2), 153-160.
  17. G. Khan, W. J. Basirun, S. N. Kazi, P. Ahmed, L. Magaji, S. M. Ahmed, G. M. Khan, and M. A. Rehman, J. Colloid Interface Sci., 2017, 502, 134-145.
  18. S. John, R. Jeevana, K. K. Aravindakshan, and A. Joseph, Egypt. J. Pet., 2017, 26, 405-412.
  19. S. K. Saha, A. Dutta, P. Ghosh, D. Sukul, and P. Banerjee, Phys. Chem. Chem. Phys., 2016, 18(27), 17898-17911.
  20. N. Z. N. Hashim, K. Kassim, and Y. Mohd, APCBEE Procedia, 2012, 3, 239-244.
  21. Z. Zhan, M. Sun, Y. Jiang, L. Li, and J. Li, Int. J. Electrochem. Sci.,2016, 11, 3963-3975.
  22. H. Zarrok, H. Oudda, and A. Zarrouk, Der Pharma Chem., 2011, 3(6), 576-590.
  23. E. E. Ebenso, D. A. Isabirye, and N. O. Eddy, Int. J. Mol. Sci., 2010, 11, 2473-2498.
  24. A. Manivel, S. Ramkumar, J. J. Wu, A. M. Asiri, and S. Anandan, J. Environ. Chem. Eng., 2014, 2(1), 463-470.
  25. R. Idouhli, A. N'Ait Ousidi, Y. Koumya, A. Abouelfida, A. Benyaich, A. Auhmani, and M. Y. Ait Itto, Int. J. Corros., 2018, 2018, 1-15.