DOI QR코드

DOI QR Code

Electrochemical Characteristics of Solid Polymer Electrode Fabricated with Low IrO2 Loading for Water Electrolysis

  • Ban, Hee-Jung (Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Min Young (Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Dahye (Korea Institute of Industrial Technology (KITECH)) ;
  • Lim, Jinsub (Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Tae Won (Korea Institute of Industrial Technology (KITECH)) ;
  • Jeong, Chaehwan (Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Yoong-Ahm (Department of Advance Chemicals and Engineering, Chonnam National University) ;
  • Kim, Ho-Sung (Korea Institute of Industrial Technology (KITECH))
  • Received : 2018.07.03
  • Accepted : 2018.08.28
  • Published : 2019.03.31

Abstract

To maximize the oxygen evolution reaction (OER) in the electrolysis of water, nano-grade $IrO_2$ powder with a low specific surface was prepared as a catalyst for a solid polymer electrolyte (SPE) system, and a membrane electrode assembly (MEA) was prepared with a catalyst loading as low as $2mg\;cm^{-2}$ or less. The $IrO_2$ catalyst was composed of heterogeneous particles with particle sizes ranging from 20 to 70 nm, having a specific surface area of $3.8m^2g^{-1}$. The anode catalyst layer of about $5{\mu}m$ thickness was coated on the membrane (Nafion 117) for the MEA by the decal method. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) confirmed strong adhesion at the interface between the membrane and the catalyst electrode. Although the loading of the $IrO_2$ catalyst was as low as $1.1-1.7mg\;cm^{-2}$, the SPE cell delivered a voltage of 1.88-1.93 V at a current density of $1A\;cm^{-2}$ and operating temperature of $80^{\circ}C$. That is, it was observed that the over-potential of the cell for the oxygen evolution reaction (OER) decreased with increasing $IrO_2$ catalyst loading. The electrochemical stability of the MEA was investigated in the electrolysis of water at a current density of $1A\;cm^{-2}$ for a short time. A voltage of ~2.0 V was maintained without any remarkable deterioration of the MEA characteristics.

E1JTC5_2019_v10n1_22_f0001.png 이미지

Fig. 1. Schematic of the SPE single-cell.

E1JTC5_2019_v10n1_22_f0002.png 이미지

Fig. 2. XRD patterns of Ir black and IrO2 powder.

E1JTC5_2019_v10n1_22_f0003.png 이미지

Fig. 3. SEM image of Ir black, IrO2 and Pt/C (40 wt%) powder.

E1JTC5_2019_v10n1_22_f0004.png 이미지

Fig. 4. SEM image showing the cross-section (a) of a fresh MEA with anode (IrO2) (b), and cathode (Pt/C (Pt 40 wt%)) (c), respectively.

E1JTC5_2019_v10n1_22_f0005.png 이미지

Fig. 5. SEM image showing the surface of IrO2 (a), Ir black (b) of anode, and Pt/C (Pt 40 wt%) (c) of cathode.

E1JTC5_2019_v10n1_22_f0006.png 이미지

Fig. 6. Impedance curves of MEA cells with various catalyst at 80°C and 10 mV (a), Nyquist plot feature (IrO2-3 as example) and the equivalent circuit for SPE water electrolysis (b).

E1JTC5_2019_v10n1_22_f0007.png 이미지

Fig. 7. Polarization curves (a), and over-potential (b) of the SPE water electrolysis cell with the MEAs prepared with iridium oxide catalyst and iridium black electrode at atmospheric pressure and 80°C.

E1JTC5_2019_v10n1_22_f0008.png 이미지

Fig. 8. Evaluation of stability of SPE cells with the indicated MEAs at 80°C and 1 A cm-2.

Table 1. Electrode design of single cells with various loading level.

E1JTC5_2019_v10n1_22_t0001.png 이미지

Acknowledgement

Supported by : KITECH

References

  1. P. Millet, T. Alleau and R. Durand, J. Appl. Electrochem.,1993, 23(4), 322-331. https://doi.org/10.1007/BF00296687
  2. P. Millet, N. Mbemba, S. A. Rigoriev, V. N. Fateev, A. Aukauloo and C. Etievant, Int. J. Hydrogen Energy, 2011, 36(6), 4134-4142. https://doi.org/10.1016/j.ijhydene.2010.06.105
  3. S. Grigoriev, V. Porembsky and V. Fateev, Int. J. Hydrogen Energy, 2006, 31(2), 171-175. https://doi.org/10.1016/j.ijhydene.2005.04.038
  4. Egil Rasten, editor, Electrocatalysis in Water Electrolysis with Solid Polymer Electrolyte, 2001, p22.
  5. A. Marshall, B. Borresen, Hagen, S. Sunde, M. Tsypkin and R. Tunold, Russ. J. Electrochem., 2006, 42(10), 1134-1140. https://doi.org/10.1134/S1023193506100223
  6. S. Siracusano, V. Baglio, A. Stassi, R. Ornelas, V. Antonucci and A. S. Arico, Int. J. Hydrogen Energy, 2011, 36(13), 7822-7831. https://doi.org/10.1016/j.ijhydene.2010.12.080
  7. J. J. Kim, Y. S. Choi, and S. J. Kwon, J. Korean Electrochem. Soc., 2013, 16(2), 70-73. https://doi.org/10.5229/JKES.2013.16.2.70
  8. Y. J. Zhang, C. Wang, N. F. Wan, Z. X. Liu and Z. Q. Mao, Electrochem. Commun., 2007, 9(4), 667-670. https://doi.org/10.1016/j.elecom.2006.10.048
  9. R. Yamaguch, In Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference, 1997, Vol. 3, 1958-1968.
  10. L. Ma, S. Sui and Y. Zhai, Int. J. Hydrogen Energy, 2009, 34(2), 678-684. https://doi.org/10.1016/j.ijhydene.2008.11.022
  11. G. Li, H. Yu, X. Wang, S. Sun, Y. Li, Phys. Chem. Chem. Phys., 2013, 15(8), 2858-2866. https://doi.org/10.1039/c2cp44496h
  12. J.-M. Hu, J.-Q. Zhang and C.-N. Cao, Int. J. Hydrogen Energy, 2004, 29(8), 791-797. https://doi.org/10.1016/j.ijhydene.2003.09.007
  13. L. Ma, S. Sui, Y. Zhai, Int. J. Hydrogen Energy, 2009, 34(2), 678-684. https://doi.org/10.1016/j.ijhydene.2008.11.022
  14. C. Rozain, E. Mayousse, N. Guillet, P. Millet, Appl. Catal. B: Environ., 2016, 182, 153-160. https://doi.org/10.1016/j.apcatb.2015.09.013
  15. C. Rozain, E. Mayousse, N. Guillet, P. Millet, Appl. Catal. B: Environ., 2016, 182, 123-131. https://doi.org/10.1016/j.apcatb.2015.09.011
  16. H. Su, V. Linkov, B. J. Bladergroen, Int. J. Hydrogen Energy, 2013, 38(23), 9601-9608. https://doi.org/10.1016/j.ijhydene.2013.05.099
  17. M.S. Wilson and S. Gottesfeld, J. Electrochem. Soc., 1992, 139(2), L28-L30. https://doi.org/10.1149/1.2069277
  18. M.S. Wilson and S. Gottesfeld, J. Appl. Electrochem., 1992, 22(1), 1-7. https://doi.org/10.1007/BF01093004
  19. R. S. Chen, Y. S. Huang, Y. M. Liang, D. S. Tsai, Y. Chi, and J. J. Kai, J. Mater. Chem., 2003, 13(10), 2525-2529. https://doi.org/10.1039/b305602n
  20. S. Kumar, S. Chinnathambi, and N. Munichandraiah, New J. Chem., 2015, 39(9), 7066-7075. https://doi.org/10.1039/C5NJ01124H
  21. C. Gutsche, C. J. Moeller, M. Knipper, H. Borchert, J. Parisi, and T. Plaggenborg, J. Phys. Chem. C, 2016, 120(2), 1137-1146. https://doi.org/10.1021/acs.jpcc.5b11437
  22. P. Millet, N. Mbemba, S. A. Grigoriev, V. N. Fateev, A. AukaulooA, C. Etie'vant, Int. J. Hydrogen Energy, 2011, 36(6), 4134-4142. https://doi.org/10.1016/j.ijhydene.2010.06.105
  23. X.Z.Yuan, H.J.Wang, J.C. Sun, J.J. Zhang, Int. J. Hydrogen Energy, 2007, 32(17), 4365-4380 https://doi.org/10.1016/j.ijhydene.2007.05.036
  24. G. Wei, Y. Wang, C. Huang, Q. Gao, Z. Wang and L. Xu, Int. J. Hydrogen Energy, 2010, 35(9), 3951-3957. https://doi.org/10.1016/j.ijhydene.2010.01.153
  25. F. Andolfatto, R. Durand, A. Michas, P. Millet and P. Stevens, Int. J. Hydrogen Energy, 1994, 19(5), 421-427. https://doi.org/10.1016/0360-3199(94)90018-3
  26. P. Millet, F. Andolfatto and R. Durand, Int. J. Hydrogen Energy, 1996, 21(2), 87-93. https://doi.org/10.1016/0360-3199(95)00005-4