DOI QR코드

DOI QR Code

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos

HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석

KIM, EUN YOUNG;AN, SUNG MIN;CHOI, DONG HAN;LEE, HOWON;NOH, JAE HOON
김은영;안성민;최동한;이호원;노재훈

  • Received : 2018.11.05
  • Accepted : 2018.12.06
  • Published : 2019.02.28

Abstract

In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.

Keywords

Microphytobenthos;Photosynthetic pigments;Tidal flat;Vertical distribution;Diadinoxanthin;Diatoxanthin

References

  1. Larras, F., B. Montuelle, F. Rimet, N. Chevre, and A.Bouchez, 2014. Seasonal shift in the sensitivity of a natural benthic microalgal community to a herbicide mixture: impact on the protective level of thresholds derived from species sensitivity distributions. Ecotoxicology, 23(6): 1109-1123. https://doi.org/10.1007/s10646-014-1254-2
  2. Lee, H.Y., 2013. Diversity and biomass of benthic diatoms in Hampyeong bay tidal flats. Korean J. Environ. Biol., 31(4): 295-301. https://doi.org/10.11626/KJEB.2013.31.4.295
  3. Lee, I.G., S.M. Boo and S.H. Lee, 2004. Diversity and system of Microalgae. Life Science Publishing Co., Lehi, 66 pp.
  4. Hejdukova, E., 2016. Tolerance of pennate diatoms (Bacillariophyceae) to experimental freezing: comparison of polar and temperate strains. Ph.D. Thesis, Charles University, Czech, 13-14, 43-44 pp.
  5. Hwang, C.Y. and B.C. Cho, 2005. Measurement of net photosynthetic Rates in intertidal flats of Ganghwa-gun and Incheon north harbor using oxygen microsensors. J. Korean Soc. Ocean., 10: 31-37.
  6. Jesus, B., V. Brotas, M. Marani and D.M. Paterson, 2005. Spatial dynamics of microphytobenthos determined by PAM fluorescence. Estuar. Coast. Shelf Sci., 68: 547-556.
  7. Jonsson, B., K. Sundback and C. Milsson, 1994. An upright life-form of an epipelic motile diatom: on the behavior of Gyrosigma balticum. Eur. J. Phycol., 29: 11-15. https://doi.org/10.1080/09670269400650421
  8. Kim, D.S. and K.H. Kim, 2008. Tidal and seasonal variations of nutrients in Keunso bay, the yellow sea. Ocean Polar Res., 30(1): 1-10.
  9. Kim, J.H. and K.J. Cho, 1985. The Physico-chemical properties of sediment, the species composition and biomass of benthic diatoms in the intertidal zone of Kum river estuary. J. Ecol. Environ., 8: 21-29.
  10. Kim, J.N., Y.J. Choi, K.H. Im, K.H. Choi and C.W. Ma, 2005. Species composition and seasonal variation of decapod crustacean assemblage in Hampyeong Bay. Korea. J. Kor. Fish Soc., 38(1): 20-28.
  11. Kingston, M.B. and J.S. Gough, 2009. Vertical migration of a mixed-species Euglena (Euglenophyta) assemblage inhabiting the high-intertidal sands of Nye beach, Oregon. J. Phycol., 45: 1021-1029. https://doi.org/10.1111/j.1529-8817.2009.00748.x
  12. KIOST, 2010. Studies on sediments waters and biota to understand major environmental factors in rehabilitation of degraded tidal flats. Korean Institute of Ocean Science and Technology. BSPE98462-2253-5. 436 p.
  13. Krembs, C., H. Eicken and J.W. Deming, 2011. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. PNAS, 108: 3653-3658. https://doi.org/10.1073/pnas.1100701108
  14. Kromkamp, J.C., C. Barranguet and J. Peene, 1998. Determination of microphytobenthos PSII quantum efficiency and phytosynthetic activity by means of variable chlorophyll fluorescence. Mar. Ecol. Prog. Ser., 162: 45-55. https://doi.org/10.3354/meps162045
  15. Kuhl, M., R.N. Glud, H. Ploug, N.B. Ramsing, 1996. Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol., 32: 799-812. https://doi.org/10.1111/j.0022-3646.1996.00799.x
  16. MacIntyre, H.L., R.J. Geider and D.C. Miller, 1996. Microphytobenthos: The ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. 1. Distribution, abundance and primary production. Estuar. Coast., 19: 186-201. https://doi.org/10.2307/1352224
  17. Meyer, A.A., M. Tackx and N. Daro, 2000. Xanthophyll cycling in Phaeocystis globosa and Thalassiosira sp.: a possible mechanism for species succession. J. Sea Res., 43: 273-384.
  18. Min, W.G., D.S. Kim and J.H. Le, 2006. Community structure and spatial variation of meiobenthos associated with and artificial structure. J. Kor. Fish Soc., 39: 223-230.
  19. NASA, 2012. The Fifth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-5). NASA ocean color paper NASA/TM-2012-217503, 12 p.
  20. Nielsen, L.P., P.B. Christensen and N.P. Revsbech, 1990. Denitrification and photosynthesis in stream sediment studied with microsensors and whole-core techniques. Limnol. Oceanogr., 35: 1135-1144. https://doi.org/10.4319/lo.1990.35.5.1135
  21. Nowicki, B.I. and S.W. Nixon, 1985. Benthic community metabolism in a coastal lagoon ecosystem. Mar. Ecol. Prog. Ser., 22: 21-30. https://doi.org/10.3354/meps022021
  22. Oh, S.H., 1990. Environmental characteristics and diatom communities on the Mangyung-Dongjin Tidal flat, West coast of Korea. M.D. Thesis, Seoul National University, Seoul, 99 p.
  23. Oh, S.J., C.H. Moon and M.O. Park, 2004. HPLC analysis of biomass and community composition of microphytobenthos in the Saemankeum tidal flat, west coast of Korea. J. Kor. Fish Soc., 37: 215-225.
  24. Olaizola, M. and H.Y. Yamamoto, 1994. Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros-muelleri (Bacillariophyceae). J. phycol., 20: 606-612.
  25. Perkins, R.G., K. Oxborough, A.R.M. Hanlon, G.J.C. Underwood and N.R. Baker, 2002. Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilm? Mar. Ecol. Prog. Ser., 228: 47-56. https://doi.org/10.3354/meps228047
  26. Perry, M.J., M.C. Talbot and S.A. Alberts, 1981. Photoadaptation in marine phytoplankton: response of the photosynthetic unit. Mar Biol., 62: 91-101. https://doi.org/10.1007/BF00388170
  27. Plante-Cuny, M.R. and A. Bodoy, 1987. Biomasse et production primarie du phytoplankton et du microphytobenthos de deux biotopes sableux (Golfe de Fos, France). Oceanology Acta.,10: 223-237.
  28. Prezelin, B.B. and B.M. Sweeney, 1978. Photoadaptation of photosynthesis in Gonyaulax polyedra. Mar. Biol., 48: 17-35.
  29. Zapata, M., F. Rodriguez and L. Garrido, 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser., 195: 29-45. https://doi.org/10.3354/meps195029
  30. Pesce, S., I. Batisson, C. Bardot, C. Fajon, C. Portelli, B. Montuelle and J. Bohatier, 2009. Response of spring and summer riverine microbial communities following glyphosate exposure. Ecotoxicol. Environ. Saf., 72(7): 1905-1912. https://doi.org/10.1016/j.ecoenv.2009.07.004
  31. Raven, P.H., P.F. Evert and S.E. Eichorn, 1992. Biology of Plants. Worth Publishers, New York, 791 pp.
  32. Riper, D.M., T.G. Owens and P.G. Falkowski, 1979. Chlorophyll turnover in Skeletonema costatum, a marine plankton diatom. Plant Physiol., 64: 49-54. https://doi.org/10.1104/pp.64.1.49
  33. Roy, S., C. Llewelly, E.S. Egeland and G. Johnsen, 2011. Phytoplankton pigments (Characterization, chemotaxonomy and Applications of Oceanography). Cambridge University Press, Cambridge, 37, 46-54 pp.
  34. Serodio, J., J.M. da Silca, F. Catarino, 1997. Non-destructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chl-a fluorescence. J. phycol., 33: 545-553.
  35. Shim, J.H. and B.C. Joe, 1984. Community composition of microphytobenthos living in intertidal zone near Incheon, Symposium of College of Natural science, Seoul National University, 9: 135-150.
  36. Shin, A.Y., D.S. Kim, T.W. Kang, J.H. Oh, J.M. Lee and J.S. Hong, 2016. Seasonal fluctuation of meiobenthic fauna community at Keunso tidal flat in Taean, Korea. J. Korean soc. Ocean., 21(4): 144-157.
  37. Sukenik, A., K.D. Wyman, J. Bennnett and P.G. Falkowski, 1987. A novel mechanism for regulating the excitation of photosystem II in a green alga. Nature Lond., 327: 704-707. https://doi.org/10.1038/327704a0
  38. Sullivan, M.J. and F.C. Daiber, 1975. Light, nitrogen, and phosphorous limitation of edaphic algae in a Delaware salt marsh. J. Exp. Mar. Biol. Ecol., 18: 79-88. https://doi.org/10.1016/0022-0981(75)90018-0
  39. Sullivan, M.J. and C. Moncreiff, 1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analysis, Mar. Ecol. Prog. Ser., 32: 149-159.
  40. Sun, M.Y., R.C. Aller and C. Lee, 1994. Spatial and temporal distributions of sedimentary chloropigments as indicators of benthic processes in Long Island Sound. J. Mar. Res., 52: 149-176. https://doi.org/10.1357/0022240943076768
  41. Yallop, M.L., B. Winder, D.M. Paterson and L.J. Stal, 1994. Comparative structure, Primary production and biogenic stabilization of cohensive and non-cohensive marine sediments inhabited by microphytobenthos. Estuar. Coast. Shelf Sci.,39: 565-582. https://doi.org/10.1016/S0272-7714(06)80010-7
  42. Yoo, M.H. and J.K. Choi, 2005. Seasonal distribution and primary production of microphytobenthos on an intertidal mud flat of the Janghwa in Ganghwa Island, Korea. J. Korean Soc. Ocean., 10: 8-18.
  43. Young, A.J. and H.A. Frank, 1996. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. J. Photochem. Photobiol. B: Biol., 36: 3-15. https://doi.org/10.1016/S1011-1344(96)07397-6
  44. Yun, M.S., C.H. Lee and I.K. Chung, 2009. Influence of Temperature on the Photosynthetic Responses of Benthic Diatoms: Fluorescence Based Estimates. J. Korean Soc. Ocean., 14(2): 118-126.
  45. Brown, B.E., R.P. Dunne, M.E. Warner, I. Ambarsari, W.K. Fitt, W. Gibb and D.G. Cummings, 2000. Damage and recovery of Photosystem II during a manipulative field experiment on solar bleaching in the coral Goniastrea aspera. Mar. Ecol. Prog. Ser., 195: 117-124. https://doi.org/10.3354/meps195117
  46. Buffan-Dubau, E. and K.R. Carman, 2000. Extraction of benthic microalgal pigments for HPLC analyses. Mar. Ecol. Prog. Ser., 204: 293-297. https://doi.org/10.3354/meps204293
  47. An, S.M., D.H. Choi, H. Lee and J.H. Noh, 2017. Identification of benthic diatoms isolated from the eastern tidal flats of the Yellow Sea: Comparison between morphological and molecular approaches. Plos one, 12(6): e0179422. https://doi.org/10.1371/journal.pone.0179422
  48. An, S.M., D.H. Choi, H. Lee, J.H. Lee and J.H. Noh, 2018. Next-generation sequencing reveals the diversity of benthic diatoms in tidal flats. Algae, 33(2): 167-180. https://doi.org/10.4490/algae.2018.33.4.3
  49. Burkill, P.H., R.F.C Mantoura, C.A. Llewellyn and N.J.P. Owens, 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol., 93: 581-590. https://doi.org/10.1007/BF00392796
  50. Cadee, G.C. and J. Hegeman, 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res., 8: 260-291. https://doi.org/10.1016/0077-7579(74)90020-9
  51. Chan, A.T., 1978. Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. I. Growth under continuous light. J Phycol., 14: 396-402. https://doi.org/10.1111/j.1529-8817.1978.tb02458.x
  52. Choi, Y.H., Y.S. Choi, Y.S. Cho, Y.T. Kim and S.R. Jeon, 2016. A study on the habitat suitability considering survival, Growth, Environment for Ruditapes philippinarum in Geunso Bay (Pado and Beopsan). J. Korean. Soc. Mar. Environ. Saf., 22: 723-730. https://doi.org/10.7837/kosomes.2016.22.6.723
  53. Colijn, F. and V.N. de Jonge, 1984. Primary production of microphytobenthos in the Ems-Dollard Estuary. Mar. Ecol. Prog. Ser., 14: 185-196. https://doi.org/10.3354/meps014185
  54. Lee, Y.W., 2001. Studies on pigment analysis of microphytobenthos by HPLC in sediment of Gomso Bay, Korea. M.S. Thesis, Pukyong National University, Busan, 56-69 pp.
  55. Lee, Y.W., E.J. Choi, Y.S. Kim and C.K. Kang, 2009. Seasonal variations of microphytobenthos in sediments of the estuarine muddy sandflat of Gwangyang Bay: HPLC Pigment Analysis. J. Korean Soc. Oceanogr., 14: 48-55.
  56. Lukatelich, R.J. and A.J. McComb, 1986. Distribution and abundance of benthic microalgae in a shallow southwestern Australian esturarine system. Mar. Ecol. Prog. Ser., 27: 287-297. https://doi.org/10.3354/meps027287
  57. Falkowski, P.G. and T.G. Owens, 1980. Light-shade adaptation: 2 strategies in marine phytoplankton. Plant Physiol., 66: 592-595. https://doi.org/10.1104/pp.66.4.592
  58. Forster, R.M. and J.C. Kromkamp, 2004. Modelling the effects of chlorophyll fluorescence from subsurface layers on photosynthetic efficiency measurements in microphytobenthic algae. Mar. Ecol. Prog. Ser., 264: 9-22.
  59. Frank, H.A. and R.J. Cogdell, 1996. Carotenoids in photosynthesis. Photochem. Photobiol., 63: 257-364. https://doi.org/10.1111/j.1751-1097.1996.tb03022.x
  60. Gould, D.M. and E.D. Gallagher, 1990. Field measurements of specific growth rate, biomass, and primary production of benthic diatoms of Savin Hill Cove, Boston. Limnol. Oceanogr., 35: 1757-1770. https://doi.org/10.4319/lo.1990.35.8.1757
  61. Goto, N., O. Mitamura and H. Terai, 2000. Seasonal variation in primary production of microphytobenthos at the Isshiki intertidal flat in Mikawa Bay. Limnol. (Japanese), 1: 133-138. https://doi.org/10.1007/s102010070019
  62. Halldal, P., 1970. The photosynthetic apparatus of microalgae and its adaptation to environmental factors. In: Photobiology of microorganisms, edited by Halldal, P., Wiley, New York, 17-56 pp.
  63. Hay, S.I., T.C. Maitland and D.M. Paterson, 1993. The speed of diatom migration through natural and artificial substrata. Diatom Res., 8: 371-384. https://doi.org/10.1080/0269249X.1993.9705268
  64. Heip, C.H.R., N.K. Goosen, P.M.J. Herman, J. Kromkamp, J.J. Middelburg and K. Soetaert, 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanogr. Mar. Biol. Ann. Rev., 33: 1-149.
  65. Admiraal, W., 1984. The ecology of estuarine sediment inhabiting diatoms. Prog. phycol. Res., 3: 269-322.
  66. Barranguet, C., P.M.J. Herman and J.J. Sinke, 1997. Microphytobenthos biomass and community composition studied by pigment biomarkers: importance and fate in the carbon cycle of a tidal flat. J. Sea. Rea., 38: 59-70. https://doi.org/10.1016/S1385-1101(97)00032-4
  67. Bebout, B.M. and F. Garcia-Pichel, 1995. UV B-induced Vertical Migrations of Cyanobacteria in a Microbial Mat. Environ. Microbiol., 61: 4215-4222.
  68. Bidigare, R.P., T.J. Frank, C. Zastrow and J.M. Brooks, 1986. The distribution of algal chlorophylls and their degradation products in the Southern Ocean. Deep-Sea Res., 33: 923-937.
  69. Underwood, G.J.C. and J. Kromkamp, 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Adv. Ecol. Res., 29: 93-153.
  70. van Leeuwe, M.A., V. Brotas, M. Consalvey, R.M. Forster, D. Gillespie, B. Jesus, J. Roggeveld and W.W.C. Gieskes, 2008. Photoacclimation in microphytobenthos and the role of xanthophyll pigments. Eur. J. Phycol., 43(2): 123-132. https://doi.org/10.1080/09670260701726119
  71. Varela, M. and E. Penas, 1985. Primary production of benthic microalgae in an intertidal sand flat of the Ria de Arosa, NM spain. Mar. Ecol. Prog. Ser., 25: 111-119. https://doi.org/10.3354/meps025111
  72. Welsh, D.T., 2000. Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiology Reviews, 24: 263-290. https://doi.org/10.1111/j.1574-6976.2000.tb00542.x
  73. Woods Hole, 1997. U.S. Joint Global Ocean Flux Study, Bermuda Atlantic Time-series Study. Data Report for BATS 61-BATS 72.
  74. Consalvey, M, D.M. Paterson and G.J.C Underwood, 2004. The ups and downs of life in a benthic biofilm: Migration of benthic diatoms. Diatom Res., 19: 181-202. https://doi.org/10.1080/0269249X.2004.9705870
  75. de Jonge, V.N. and F. Colijn, 1994. Dynamics of microphytobenthos biomass in the Ems estuary. Mar. Ecol. Prog. Ser., 104: 185-196. https://doi.org/10.3354/meps104185
  76. Davis, M.W. and C.D. Mcintire, 1983. Effects of physical gradients on the production dynamics of sediment-associated algae. Mar. Ecol. Prog. Ser., 13: 103-114. https://doi.org/10.3354/meps013103
  77. Demers, S., S. Roy, R. Gagnon and C. Vignault, 1991. Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photo-protection mechanism. Mar. Ecol. Prog. Ser., 76: 185-193. https://doi.org/10.3354/meps076185
  78. Denis, L., F. Gevaert and N. Spilmont, 2012. Microphytobenthic production estimated by in situ oxygen microprofiling: short-term dynamics and carbon budget implications. J. Soils sediments, 12: 1517-1529. https://doi.org/10.1007/s11368-012-0588-8
  79. Du, G.Y., M. Son, S. An and I.K. Chung, 2010. Temporal variation in the vertical distribution of microphytobenthos in intertidal flats of the Nakdong River esturary, Korea. Estuar. Coast. Shelf Sci., 86: 62-70. https://doi.org/10.1016/j.ecss.2009.10.008
  80. Elisabeth, A. and J.M. Bernhard, 1995. Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm. Mar. Ecol. Prog. Ser., 116: 137-151. https://doi.org/10.3354/meps116137
  81. EPA, 1997. Method 445.0. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. 8-9 pp.

Acknowledgement

Supported by : 한국해양과학기술원