DOI QR코드

DOI QR Code

Photocatalytic Performance of Graphene-TiO2 Hybrid Nanomaterials Under Visible Light

  • Park, Jaehyeung (Division of Advanced Materials Engineering, Dong-Eui University)
  • Received : 2019.01.03
  • Accepted : 2019.01.22
  • Published : 2019.03.01

Abstract

This study describes the development of graphene-$TiO_2$ conjugates for the enhancement of the photocatalytic efficiency of $TiO_2$. Graphene-based hybrid nanomaterials have attracted considerable attention because of the unique and advantageous properties of graphene. In the proposed hybrid nanomaterial, graphene serves as an electron acceptor to ensure fast charge transfer. Effective charge separation can, therefore, be achieved to slow down electron-hole recombination. This results in an enhancement of the photocatalytic activity of $TiO_2$. In addition, increased adsorption and interactions with the adsorbed reagents also lead to an improvement in the photocatalytic activity of graphene-$TiO_2$ hybrid nanomaterials. The acquired result is encouraging in that the photocatalytic activity of $TiO_2$ was initiated using visible light (630 nm) instead of the typical UV light.

JJJRCC_2019_v32n2_161_f0002.png 이미지

Fig. 1. TEM images of (a) PFPA-TiO2, (b) graphene flake, (c) G-TiO2, and IR spectra of (d) PFPA-TiO2.

JJJRCC_2019_v32n2_161_f0003.png 이미지

Fig. 2. UV-vis spectra of (a) TiO2, (b) TiO2-PFPA, and (c) G-TiO2.

JJJRCC_2019_v32n2_161_f0004.png 이미지

Fig. 4. Photocatalytic activity measurement, measured as I/I0 (excitation 630 nm).

JJJRCC_2019_v32n2_161_f0005.png 이미지

Fig. 3. (a) Photocatalysis mechanism and (b) reaction of SOSG with singlet oxygen. The endoperoxide of SOSG product is highly fluorescent (excitation/emission maxima ~504/525 nm).

Acknowledgement

Supported by : Dong-eui University, Korea Institute for Advancement of Technology (KIAT)

References

  1. P. V. Kamat, J. Phys. Chem. Lett., 2, 242 (2011). [DOI: https://doi.org/10.1021/jz101639v] https://doi.org/10.1021/jz101639v
  2. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, ACS Nano, 4, 380 (2009). [DOI: https://doi.org/10.1021/nn901221k] https://doi.org/10.1021/nn901221k
  3. Y. Zhang, Z. R. Tang, X. Fu, and Y. J. Xu, ACS Nano, 5, 7426 (2011). [DOI: https://doi.org/10.1021/nn202519j] https://doi.org/10.1021/nn202519j
  4. R. Long, N. J. English, and O. V. Prezhdo, J. Am. Chem. Soc., 134, 14238 (2012). [DOI: https://doi.org/10.1021/ja3063953] https://doi.org/10.1021/ja3063953
  5. S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus Jr, ACS Catal., 2, 949 (2012). [DOI: https://doi.org/10.1021/cs200621c] https://doi.org/10.1021/cs200621c
  6. B. Qiu, M. Xing, and J. Zhang, J. Am. Chem. Soc., 136, 5852 (2014). [DOI: https://doi.org/10.1021/ja500873u] https://doi.org/10.1021/ja500873u
  7. R. Mo, Z. Lei, K. Sun, and D. Rooney, Adv. Mater., 26, 2084 (2014). [DOI: https://doi.org/10.1002/adma.201304338] https://doi.org/10.1002/adma.201304338
  8. I. V. Lightcap and P. V. Kamat, J. Am. Chem. Soc., 134, 7109 (2012). [DOI: https://doi.org/10.1021/ja3012929] https://doi.org/10.1021/ja3012929
  9. J. Park, T. Jin, C. Liu, G. Li, and M. Yan, ACS Omega, 1, 351 (2016). [DOI: https://doi.org/10.1021/acsomega.6b00113] https://doi.org/10.1021/acsomega.6b00113
  10. J. Park and M. Yan, Nanotechnol. Rev., 5, 417 (2016). [DOI: https://doi.org/10.1515/ntrev-2015-0043] https://doi.org/10.1515/ntrev-2015-0043
  11. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995). [DOI: https://doi.org/10.1021/cr00035a013] https://doi.org/10.1021/cr00035a013
  12. K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys., 44, 8269 (2005). [DOI: https://doi.org/10.1143/JJAP.44.8269] https://doi.org/10.1143/JJAP.44.8269
  13. J. S. Lee, K. H. You, and C. B. Park, Adv. Mater., 24, 1084 (2012). [DOI: https://doi.org/10.1002/adma.201104110] https://doi.org/10.1002/adma.201104110
  14. Y. B. Tang, C. S. Lee, J. Xu, Z. T. Liu, Z. H. Chen, Z. He, Y. L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, ACS Nano, 4, 3482 (2010). [DOI: https://doi.org/10.1021/nn100449w] https://doi.org/10.1021/nn100449w
  15. C. Nethravathi and M. Rajamathi, Carbon, 46, 1994 (2008). [DOI: https://doi.org/10.1016/j.carbon.2008.08.013] https://doi.org/10.1016/j.carbon.2008.08.013
  16. C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett., 7, 3499 (2007). [DOI: https://doi.org/10.1021/nl072090c] https://doi.org/10.1021/nl072090c
  17. G. Williams, B. Seger, and P. V. Kamat, ACS Nano, 2, 1487 (2008). [DOI: https://doi.org/10.1021/nn800251f] https://doi.org/10.1021/nn800251f
  18. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, and Y. Feng, ACS Nano, 4, 6425 (2010). [DOI: https://doi.org/10.1021/nn102130m] https://doi.org/10.1021/nn102130m
  19. L. Liu and M. Yan, Angew. Chem. Int. Ed., 45, 6207 (2006). [DOI: https://doi.org/10.1002/anie.200602097] https://doi.org/10.1002/anie.200602097
  20. H. Wang, J. Ren, A. Hlaing, and M. Yan, J. Colloid Interface Sci., 354, 160 (2011). [DOI: https://doi.org/10.1016/j.jcis.2010.10.018] https://doi.org/10.1016/j.jcis.2010.10.018
  21. T. Kubo, X. Wang, Q. Tong, and M. Yan, Langmuir, 27, 9372 (2011). [DOI: https://doi.org/10.1021/la201324h] https://doi.org/10.1021/la201324h
  22. J. Park, H.S.N. Jayawardena, X. Chen, K. W. Jayawardana, M. Sundhoro, E. Ada, and M. Yan, Chem. Commun., 51, 2882 (2015). [DOI: https://doi.org/10.1039/C4CC07936A] https://doi.org/10.1039/C4CC07936A
  23. G. Munuera, A. Navio, and V. Rives-Arnau, J. Chem. Soc., Faraday Trans. 1, 77, 2747 (1981). [DOI: https://doi.org/10.1039/f19817702747] https://doi.org/10.1039/f19817702747
  24. S. Wang, R. Gao, F. Zhou, and M. Selke, J. Mater. Chem., 14, 487 (2004). [DOI: https://doi.org/10.1039/b311429e] https://doi.org/10.1039/b311429e
  25. X. Ragas, A. Jimenez-Banzo, D. Sanchez-Garcia, X. Batllori, and S. Nonell, Chem. Commun., 0, 2920 (2009). [DOI: https://doi.org/10.1039/b822776d] https://doi.org/10.1039/b822776d
  26. A. Gollmer, J. Arnbjerg, F. H. Blaikie, B. W. Pedersen, T. Breitenbach, K. Daasbjerg, M. Glasius, and P. R. Ogilby, Photochem. Photobiol., 87, 671 (2011). [DOI: https://doi.org/10.1111/j.1751-1097.2011.00900.x] https://doi.org/10.1111/j.1751-1097.2011.00900.x