DOI QR코드

DOI QR Code

Fabrication of Ultra-Small Multi-Layer Piezoelectric Vibrational Device Using P(VDF-TrFE-CFE)

P(VDF-TrFE-CFE)를 이용한 초소형 압전 적층형 진동 출력 소자의 제작

  • Cho, Seongwoo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Glasser, Melodie (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jaegyu (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ryu, Jeongjae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Yunjeong (Multidisciplinary Sensor Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Hyejin (Multidisciplinary Sensor Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Park, Kang-Ho (Multidisciplinary Sensor Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Hong, Seungbum (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 조성우 (한국과학기술원 신소재공학과) ;
  • ;
  • 김재규 (한국과학기술원 신소재공학과) ;
  • 류정재 (한국과학기술원 신소재공학과) ;
  • 김윤정 (한국전자통신연구원 ICT 소재부품연구소 융복합센서연구그룹) ;
  • 김혜진 (한국전자통신연구원 ICT 소재부품연구소 융복합센서연구그룹) ;
  • 박강호 (한국전자통신연구원 ICT 소재부품연구소 융복합센서연구그룹) ;
  • 홍승범 (한국과학기술원 신소재공학과)
  • Received : 2018.11.22
  • Accepted : 2018.12.20
  • Published : 2019.03.01

Abstract

P(VDF-TrFE-CFE) (Poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)), which exhibits a high electrostriction of about 7%, can transmit tactile output as vibration or displacement. In this study, we investigated the applicability of P(VDF-TrFE-CFE) to wearable piezoelectric actuators. The P(VDF-TrFE-CFE) layers were deposited through spin-coating, and interspaced with patterned Ag electrodes to fabricate a two-layer $3.5mm{\times}3.5mm$ device. This layered structure was designed and fabricated to increase the output and displacement of the actuator at low driving voltages. In addition, a laser vibrometer and piezoelectric force microscope were used to analyze the device's vibration characteristics over the range of ~200~4,200 Hz. The on-off characteristics were confirmed at a frequency of 40 Hz.

JJJRCC_2019_v32n2_157_f0001.png 이미지

Fig. 1. Fabrication process of a multilayer actuator and a photograph of device. (a) Bottom electrode deposition on flexible PET substrate, (b) tape masking of electrode for solution processing, (c) spin coating of P(VDF-TrFE-CFE), (d) detachment of tape mask, (e) internal electrode deposition and electrode connection, (f) tape masking of electrode for solution processing, (g) spin coating of P(VDF-TrFE-CFE), (h) detachment of tape mask, (i) top electrode deposition and electrode connection, and (j) two layered piezoelectric vibrational actuator.

JJJRCC_2019_v32n2_157_f0002.png 이미지

Fig. 3. PFM amplitude and phase measurement. (a) PFM amplitude and phase as a function of ac drive frequency to the PFM tip, (b) pulse voltage input signal to the sample, and (c) coresponding PFM amplitude, induced by the input voltage in (b), as a function of time at a fixed point.

JJJRCC_2019_v32n2_157_f0003.png 이미지

Fig. 4. Laser vibrometer measurement. Photographs of (a) laser vibrometer setup and (b) 2 layer piezoelectric vibrational device. Plots of (c) frequency scan data of velocity of 2 layer actuator and (d) vibrational velocity of 2 layer actuator at resonance frequency of 1,300 Hz.

JJJRCC_2019_v32n2_157_f0004.png 이미지

Fig. 2. (a) Cross-sectional SEM image and (b) x-ray diffraction (XRD) pattern of P(VDF-TrFE-CFE) single layer.

Acknowledgement

Grant : Skintronics를 위한 감각 입출력 패널 핵심 기술 개발

Supported by : 정보통신기술진흥센터

References

  1. S. Wang, J. Y. Oh, J. Xu, H. Tran, and Z. Bao, Acc. Chem. Res., 51, 1033 (2018). [DOI: https://doi.org/10.1021/acs.accounts.8b00015] https://doi.org/10.1021/acs.accounts.8b00015
  2. S. J. Kang, Y. J. Park, J. Y. Hwang, H. J. Jeong, J. S. Lee, K. J. Kim, H. C. Kim, J. Huh, and C. Park. Adv. Mater., 19, 581 (2007). [DOI: https://doi.org/10.1002/adma.200601474] https://doi.org/10.1002/adma.200601474
  3. D. Kim, S. Hong, J. Hong, Y. Y. Choi, J. Kim, M. Park, T. H. Sung, and K. No, J. Appl. Polym. Sci., 130, 3842 (2013). [DOI: https://doi.org/10.1002/app.39415] https://doi.org/10.1002/app.39415
  4. Y. J. Park, S. J. Kang, C. Park, K. J. Kim, H. S. Lee, M. S. Lee, U. I. Chung, and I. J. Park, Appl. Phys. Lett., 88, 242908 (2006). [DOI: https://doi.org/10.1063/1.2207831] https://doi.org/10.1063/1.2207831
  5. Y. Y. Choi, T. G. Yun, N. Qaiser, H. Paik, H. S. Roh, J. Hong, S. Hong, S. M, Han, and K. No, Sci. Rep., 5, 10728 (2015). [DOI: https://doi.org/10.1038/srep10728] https://doi.org/10.1038/srep10728
  6. S. J. Kang, Y. J. Park, J. Sung, P. S. Jo, C. Park, K. J. Kim, and B. O. Cho, Appl. Phys. Lett., 92, 012921 (2008). [DOI: https://doi.org/10.1063/1.2830701] https://doi.org/10.1063/1.2830701
  7. H. Paik, Y. Y. Choi, S. Hong, and K. No, Sci. Rep., 5, 13209 (2015). [DOI: https://doi.org/10.1038/srep13209] https://doi.org/10.1038/srep13209
  8. J. Ryu, K. No, Y. Kim, E. Park, and S. Hong, Sci. Rep., 6, 36176 (2016). [DOI: https://doi.org/10.1038/srep36176] https://doi.org/10.1038/srep36176
  9. S. T. Choi, J. O. Kwon, and F. Bauer, Sens. Actuators, A, 203, 282 (2013). [DOI: https://doi.org/10.1016/j.sna.2013.08.049] https://doi.org/10.1016/j.sna.2013.08.049
  10. M. R. Gadinski, Q. Li, G. Zhang, X. Zhang, and Q. Wang, Macromolecules, 48, 2731 (2015). [DOI: https://doi.org/10.1021/acs.macromol.5b00185] https://doi.org/10.1021/acs.macromol.5b00185
  11. D. Damjanovic, Rep. Prog. Phys., 61, 1267 (1998). [DOI: https://doi.org/10.1088/0034-4885/61/9/002] https://doi.org/10.1088/0034-4885/61/9/002