DOI QR코드

DOI QR Code

A Study on the Electrical and Optical Properties of SnO2/Cu(Ni)/SnO2 Multi-Layer Structures Transparent Electrode According to Annealing Temperature

열처리 온도에 따른 SnO2/Cu(Ni)/SnO2 다층구조 투명전극의 전기·광학적 특성

  • Jeong, Ji-Won (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Kong, Heon (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Lee, Hyun-Yong (School of Chemical Engineering, Chonnam National University)
  • 정지원 (전남대학교 신화학소재공학과) ;
  • 공헌 (전남대학교 신화학소재공학과) ;
  • 이현용 (전남대학교 화학공학부)
  • Received : 2018.10.22
  • Accepted : 2018.11.30
  • Published : 2019.03.01

Abstract

Oxide ($SnO_2$)/metal alloy (Cu(Ni))/oxide ($SnO_2$) multilayer films were fabricated using the magnetron sputtering technique. The oxide and metal alloy were $SnO_2$ and Ni-doped Cu, respectively. The structural, optical, and electrical properties of the multilayer films were investigated using X-ray diffraction (XRD), ultraviolet-visible (UV-vis) spectrophotometry, and 4-point probe measurements, respectively. The properties of the $SnO_2/Cu(Ni)/SnO_2$ multilayer films were dependent on the thickness and Ni doping of the mid-layer film. Since Ni atoms inhibit the diffusion and aggregation of Cu atoms, the grain growth of Cu is delayed upon Ni addition. For $250^{\circ}C$, the Haccke's figure of merit (FOM) of the $SnO_2$ (30 nm)/Cu(Ni) (8 nm)/$SnO_2$ (30 nm) multilayer film was evaluated to be $0.17{\times}10^{-3}{\Omega}^{-1}$.

JJJRCC_2019_v32n2_134_f0001.png 이미지

Fig. 1. Schematic diagram of oxide/metal/oxide multi-layer structure.

JJJRCC_2019_v32n2_134_f0002.png 이미지

Fig. 2. FESEM image of 8 nm Cu(Ni) film depositing onto SnO2 (30 nm) with annealing temperatures at (a) room temperature and (b) 250℃ for 1hr and 8 nm Cu film depositing onto SnO2 (30 nm) with annealing temperatures at (c) room temperature and (d) 250℃ for 1 hr.

JJJRCC_2019_v32n2_134_f0003.png 이미지

Fig. 3. XRD patterns of Cu and Cu(Ni) film at different annealing temperature. (a) Cu and (b) Cu(Ni).

JJJRCC_2019_v32n2_134_f0004.png 이미지

Fig. 4. Grain size and FWHM of (111) peak of Cu and Cu(Ni) films prepared at various annealing temperatures.

JJJRCC_2019_v32n2_134_f0005.png 이미지

Fig. 5. The effect of Cu layer thickness on the (a) transmittance and (c) sheet resistance. The effect of Cu(Ni) layer thickness on the (b) transmittance and (d) sheet resistance.

JJJRCC_2019_v32n2_134_f0006.png 이미지

Fig. 6. The transmittance of SnO2/Cu(Ni)/SnO2 multi-layer structure as a function of annealing temperature. (a) as-dep (b) 200℃, (c) 250℃, and (d) 300℃.

JJJRCC_2019_v32n2_134_f0007.png 이미지

Fig. 7. The sheet resistance of SnO2/Cu(Ni)/SnO2 multi-layer structure as a function of annealing temperature.

JJJRCC_2019_v32n2_134_f0008.png 이미지

Fig. 8. The figure of merit (fom) of SnO2/Cu(Ni)/SnO2 multi-layer structure as a function of annealing temperature.

Table 1. Deposition and annealing parameters.

JJJRCC_2019_v32n2_134_t0001.png 이미지

Acknowledgement

Supported by : 한국연구재단

References

  1. K. Ellmer, Nature Photonics, 6, 809 (2012). [DOI: https://doi.org/10.1038/nphoton.2012.282] https://doi.org/10.1038/nphoton.2012.282
  2. S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, Thin Solid Films, 552, 150 (2014). [DOI: https://doi.org/10.1016/j.tsf.2013.11.109] https://doi.org/10.1016/j.tsf.2013.11.109
  3. D. S. Hecht, L. Hu, and G. Irvin, Adv. Mater., 23, 1482 (2011). [DOI: https://doi.org/10.1002/adma.201003188] https://doi.org/10.1002/adma.201003188
  4. C. H. Chu, H. W. Wu, and J. L. Huang, Thin Solid Films, 605, 121 (2016). [DOI: https://doi.org/10.1016/j.tsf.2015.11.043] https://doi.org/10.1016/j.tsf.2015.11.043
  5. K. Sugawara, M. Kawamura, Y. Abe, and K. Sasaki, Microelectron. Eng., 84, 2476 (2007). [DOI: https://doi.org/10.1016/j.mee.2007.05.050] https://doi.org/10.1016/j.mee.2007.05.050
  6. X. Lin, H. Luo, X. Jia, J. Wang, J. Zhou, Z. Jiang, L. Pan, S. Huang, and X. Chen, Org. Electron., 39, 177 (2016). [DOI: https://doi.org/10.1016/j.orgel.2016.10.008] https://doi.org/10.1016/j.orgel.2016.10.008
  7. C. Loka and K. S. Lee, Appl. Surf. Sci., 415, 35 (2017). [DOI: https://doi.org/10.1016/j.apsusc.2016.11.082] https://doi.org/10.1016/j.apsusc.2016.11.082
  8. L. Zhou, X. Chen, F. Zhu, X. Sun, and Z. Sun, J. Phys. D: Appl. Phys., 45, 505103 (2012). [DOI: https://doi.org/10.1088/0022-3727/45/50/505103] https://doi.org/10.1088/0022-3727/45/50/505103
  9. S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, Thin Solid Films, 552, 150 (2014). [DOI: https://doi.org/10.1016/j.tsf.2013.11.109] https://doi.org/10.1016/j.tsf.2013.11.109
  10. M. Kawamura, M. Yamaguchi, Y. Abe, and K. Sasaki, Microelectron. Eng., 82, 277 (2005). [DOI: https://doi.org/10.1016/j.mee.2005.07.035] https://doi.org/10.1016/j.mee.2005.07.035
  11. S. Yu, L. Li, D. Xu, H. Dong, and Y. Jin, Thin Solid Films, 562, 501 (2014). [DOI: https://doi.org/10.1016/j.tsf.2014.04.064] https://doi.org/10.1016/j.tsf.2014.04.064
  12. G. Haacke, J. Appl. Phys., 47, 4086 (1976). [DOI: https://doi.org/10.1063/1.323240] https://doi.org/10.1063/1.323240
  13. C. Guillen and J. Herrero, Thin Solid Films, 510, 260 (2006). [DOI: https://doi.org/10.1016/j.tsf.2005.12.273] https://doi.org/10.1016/j.tsf.2005.12.273