DOI QR코드

DOI QR Code

A Study on Characteristics of TiN Thin Films Deposited by Unbalanced Magnetron Sputtering Method for the Application of Diffusion Barrier Layers in Displays

디스플레이 확산 방지층 응용을 위한 비대칭 마그네트론 스퍼터로 증착된 질화 티타늄 박막의 특성에 대한 연구

  • Park, Yong Seob (Department of Electronics, Chosun College of Science and Technology)
  • 박용섭 (조선이공대학교 전자과)
  • Received : 2019.01.01
  • Accepted : 2019.01.22
  • Published : 2019.03.01

Abstract

TiN thin films were fabricated using an unbalanced magnetron sputtering (UBMS) system, and their structure and surface characteristics as well as their optical and tribological properties were evaluated. The hardness, elastic modulus, adhesive force, surface roughness, and transmittance of the Ti thin films fabricated using the UBMS system were 11.5 GPa, 103 GPa, 27.5 N, 2.45 nm and 20%, respectively. The TiN films prepared with various proportions of nitrogen as the reaction gas exhibited maximum values for the hardness, elastic modulus, critical load, RMS roughness and transmittance of approximately 19.2 GPa, 182 GPa, 27.3 N, 0.98 nm, and 85%, respectively. Moreover, the TiN thin film fabricated under the condition of 30 sccm nitrogen gas showed the optimal physical properties. In summary, the TiN thin films fabricated using the UBMS system exhibited excellent hardness, elastic modulus, adhesion, and smooth surface in addition to good hydrophilic properties.

JJJRCC_2019_v32n2_129_f0001.png 이미지

Fig. 1. FESEM cross-sectioal images of TiN thin films fabricated at the conditions of (a) 10 sccm and (b) 50 sccm N2 gas flow rates.

JJJRCC_2019_v32n2_129_f0002.png 이미지

Fig. 2. Ti and N atomic ratio in TiN thin films fabricated with the increase of N2 gas flow rate.

JJJRCC_2019_v32n2_129_f0003.png 이미지

Fig. 3. Transmittance in TiN thin films fabricated with the increase of N2 gas flow rate.

JJJRCC_2019_v32n2_129_f0004.png 이미지

Fig. 4. Hardness and elastic modulus values in TiN thin films fabricated with the increase of N2 gas flow rate.

JJJRCC_2019_v32n2_129_f0005.png 이미지

Fig. 5. Contact angle images of (a) Ti and (b) TiN thin films fabricated at 50 sccm, and (c) contact angle values in TiN thin films fabricated with the increase of N2 gas flow r1ate.

JJJRCC_2019_v32n2_129_f0006.png 이미지

Fig. 6. Rms surface roughness of (a) Ti and (b) TiN thin films fabricated at 50 sccm, and (c) Rms surface roughness values in TiN thin films fabricated with the increase of N2 gas flow rate.

JJJRCC_2019_v32n2_129_f0007.png 이미지

Fig. 7. Critical load values in TiN thin films fabricated with the increase of N2 gas flow rate.

References

  1. O. Ahmed, S. Cioc, C. Cioc, and A. H. Jayatissa, Colloid Surf. Sci., 2, 137 (2017). [DOI: https://doi.org/10.11648/j.css.20170204.13]
  2. M. R. Chavda, D. P. Dave, K. V. Chauhan, and S. K. Rawal, Procedia Technol., 23, 36 (2016). [DOI: https://doi.org/10.1016/j.protcy.2016.03.070] https://doi.org/10.1016/j.protcy.2016.03.070
  3. D. G. Sangiovanni, Linkoping Studies in Science and Technology, Dissertation, No.1513 (2013). [DOI: https://liu.diva-portal.org/smash/get/diva2:617410/FULLTEXT01.pdf]
  4. P. J. Kelly, T. vom Braucke, Z. Liu, R. D. Arnell, and E. D. Doyle, Surf. Coat. Technol., 202, 774 (2007). [DOI: https://doi.org/10.1016/j.surfcoat.2007.07.047] https://doi.org/10.1016/j.surfcoat.2007.07.047
  5. X. T. Zeng, S. Zhang, C. Q. Sun, and Y. C. Liu, Thin Solid Films, 424, 99 (2003). [DOI: https://doi.org/10.1016/S0040-6090(02)00921-5] https://doi.org/10.1016/S0040-6090(02)00921-5
  6. J. E. Sundgren, Thin Solid Films, 128, 21 (1985). [DOI: https://doi.org/10.1016/0040-6090(85)90333-5] https://doi.org/10.1016/0040-6090(85)90333-5
  7. J. E. Sundgren and H.T.G. Hentzell, J. Vac. Sci. Technol., A, 4, 2259 (1986). [DOI: https://doi.org/10.1116/1.574062] https://doi.org/10.1116/1.574062
  8. M. Wittmer, J. Vac. Sci. Technol., A, 3, 1797 (1985). [DOI: https://doi.org/10.1116/1.573382] https://doi.org/10.1116/1.573382
  9. N. Y. Kim, Y. B. Son, J. H. Oh, C. K. Hwangbo, and M. C. Park, Surf. Coat. Technol., 128, 156 (2000). [DOI: https://doi.org/10.1016/S0257-8972(00)00574-0] https://doi.org/10.1016/S0257-8972(00)00574-0
  10. C. Liu, Z. Liu, and B. Wang, Ceram. Int., 44, 3430 (2018). [DOI: https://doi.org/10.1016/j.ceramint.2017.11.142] https://doi.org/10.1016/j.ceramint.2017.11.142
  11. E. Marin, A. Lanzutti, and L. Fedrizzi, Tribol. Ind., 35, 208 (2013).
  12. Y. L. Li, D. Y. Lee, S. R. Min, H. N. Cho, J. Kim, and C. W. Chung, Jpn. J. Appl. Phys., 47, 6896 (2008). [DOI: https://doi.org/10.1143/JJAP.47.6896] https://doi.org/10.1143/JJAP.47.6896
  13. E. K. Tentardini, E. Blando, and R. Hubler, Nucl. Instrum. Methods Phys. Res., Sect. B, 175, 626 (2001). [DOI: https://doi.org/10.1016/S0168-583X(00)00652-2] https://doi.org/10.1016/S0168-583X(00)00652-2
  14. G. Lemperiere and J. M. Poitevin, Thin solid Films, 111, 339 (1984). [DOI: https://doi.org/10.1016/0040-6090(84)90326-2] https://doi.org/10.1016/0040-6090(84)90326-2
  15. M. K. Lee, H. S. Kang, W. W. Kim, J. S. Kim, and W. J. Lee, Korean J. Mater. Res., 12, 2393 (1997). [DOI: https://doi.org/10.1557/JMR.1997.0317] https://doi.org/10.1557/JMR.1997.0317
  16. H. C. Barshilia and K. S. Rajam, Bull. Mater. Sci., 30, 607 (2007). [DOI: https://doi.org/10.1007/s12034-007-0096-4] https://doi.org/10.1007/s12034-007-0096-4
  17. L. H. Lee, Fundamentals of Adhesion (2nd Edition, Plenum Press, New York, 1992) p. 6.