DOI QR코드

DOI QR Code

Damage Evaluation of Porcelain Insulators Using the Frequency Response Function

주파수응답함수(FRF)를 이용한 자기 애자의 손상평가

  • 최인혁 (한국전력공사 전력연구원) ;
  • 손주암 (한국전력공사 전력연구원) ;
  • 오태근 (인천대학교 안전공학과) ;
  • 윤영근 (인천대학교 안전공학과)
  • Received : 2018.12.31
  • Accepted : 2019.01.31
  • Published : 2019.03.01

Abstract

Porcelain insulators have been used mainly for power line fixing and electrical insulation in transmission towers. Porcelain insulators have generally a 30 years desired life, but over 50% exceed their life expectancy. Since the damage to porcelain insulators is usually accompanied by enormous loss of human resource material, their efficient maintenance has emerged as an important issue. In this regard, this study applied a frequency response function (FRF) for integrity assessment of the insulator. The characteristics of the FRF according to damage types were identified and analyzed by the change in natural frequencies, curve shape, attenuation, and Nyquist diagram stability. The results showed significant differences in the FRF according to damage types, which can be used as basic data for the effective integrity assessment of porcelain insulators.

JJJRCC_2019_v32n2_122_f0001.png 이미지

Fig. 1. Type of porcelain insulator damage: (a) normal, (b) cap damage, and (c) porcelain damage.

JJJRCC_2019_v32n2_122_f0002.png 이미지

Fig. 2. Experimental set-up for frequency response function measurement of porcelain insulator.

JJJRCC_2019_v32n2_122_f0003.png 이미지

Fig. 3. FRF results by five experimental values and average value.

JJJRCC_2019_v32n2_122_f0004.png 이미지

Fig. 4. FRF results according to impact and sensor position.

JJJRCC_2019_v32n2_122_f0005.png 이미지

Fig. 5. Accelerometer placement at various positions for FRF measurement.

JJJRCC_2019_v32n2_122_f0006.png 이미지

Fig. 6. FRF results according to position of sensors.

JJJRCC_2019_v32n2_122_f0007.png 이미지

Fig. 7. FRF results by damage type of porcelain insulator.

JJJRCC_2019_v32n2_122_f0008.png 이미지

Fig. 8. Damping raito of FRF curve shape by damage type.

JJJRCC_2019_v32n2_122_f0009.png 이미지

Fig. 9. Nyquist diagram by porcelain insulator damage type.

JJJRCC_2019_v32n2_122_f0010.png 이미지

Fig. 10. Nyquist diagram by porcelain insulator damage type.

Table 1. Type by impact hammer and sensor position.

JJJRCC_2019_v32n2_122_t0001.png 이미지

Table 2. Experimental values of natural frequency by frequency response function.

JJJRCC_2019_v32n2_122_t0002.png 이미지

References

  1. J.S.T. Looms, Insulators for High Voltages (IET, United Kingdom, 1988) p. 1.
  2. I. H. Choi, T. K. Kim, Y. B. Yoon, J. Yi, and S. W. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 551 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.9.551] https://doi.org/10.4313/JKEM.2017.30.9.551
  3. I. H. Choi, J. Y. Park, and D. H. Gang, J. Electric Power and Energy, 2, 365 (2016). [DOI: https://doi.org/10.18770/KEPCO.2016.02.03.365] https://doi.org/10.18770/KEPCO.2016.02.03.365
  4. S. D. Jeon, J. M. Oh, F. I. Kim, K. W. Jeong, H. Y. Ryu, and B. H. Lee, Trans. Korean. Inst. Elect. Eng., 58, 336 (2009).
  5. J. Y. Park, J. K. Lee, and K. Y. Oh, Trans. Korean. Inst. Elect. Eng., 60, 1239 (2011). [DOI: https://doi.org/10.5370/KIEE.2011.60.6.1239] https://doi.org/10.5370/KIEE.2011.60.6.1239
  6. J. M. Joung, D. M. Kim, and M. H. Choi, Trans. Korean. Inst. Elect. Eng., 60, 267 (2011). [DOI: https://doi.org/10.5370/KIEEP.2011.60.4.267] https://doi.org/10.5370/KIEEP.2011.60.4.267
  7. C. D. Lee and D. H. Yeo, Trans. Korean Soc. Auto. Eng., 19, 139 (2011).
  8. M. G. Jeong, K. S. Kim, and K. J. Kim, Trans. Korean Soc. Noise Vib. Eng., 16, 619 (2006). [DOI: https://doi.org/10.5050/KSNVN.2006.16.6.619] https://doi.org/10.5050/KSNVN.2006.16.6.619
  9. J. S. Bendat and A. G. Piersol, Random Data Analysis and Measurement Procedures (John Wiley & Sons, Inc, Canada, 2010) p. 25.
  10. W. J. Bottega, Engineering Vibrations (Taylor & Francis, New York, 2006) p. 109.
  11. P. Stoica, Introduction to Spectral Analysis (Prentice Hall, Michigan, 1997) p. 52.