DOI QR코드

DOI QR Code

Thermal Characteristics of Silicone Composites for the Application to Heat-Controllable Components

발열제어부품소재 적용을 위한 실리콘 복합조성물의 열전도 특성

  • Kwak, Ho-Du (Division of Advanced Materials Engineering, Dong-Eui University) ;
  • Oh, Weontae (Division of Advanced Materials Engineering, Dong-Eui University)
  • 곽호두 (동의대학교 신소재공학부) ;
  • 오원태 (동의대학교 신소재공학부)
  • Received : 2018.11.02
  • Accepted : 2018.11.19
  • Published : 2019.03.01

Abstract

Hexagonal boron nitride particles (s-hBN) modified with 3-aminopropyl triethoxysilane (APTES) were used for the preparation of silicone composite materials. The microstructure of the composite materials was observed, and the thermal conduction and mechanical characteristics of the composite sheets were studied based on the compositions and microstructures. When a small amount of s-hBN particles was used, the thermal conductivity of the composite improved as a whole, and the tensile strength of the sheet also increased. The thermal conductivity and tensile strength of the composite in which a small amount of carbon fiber was added along with s-hBN were further improved. However, the use of carbon nanotubes with structural characteristics similar to those of carbon fiber resulted in lower thermal conductivity and tensile strength. Elastic silicone composites exhibiting 2.5 W/mK of thermal conductivity and a low hardness are expected to be used as thermally conductive interfacial sheet materials.

JJJRCC_2019_v32n2_116_f0001.png 이미지

Fig. 2. FE-SEM images of silicone composites of which the compositions are summarized in Table 1. CF and MWNT structures are identified within the yellow circles.

JJJRCC_2019_v32n2_116_f0002.png 이미지

Fig. 3. Thermal conductivity plot of silicone composites. The compositions of samples are summarized in Table 1.

JJJRCC_2019_v32n2_116_f0003.png 이미지

Fig. 4. Tensile and elongation plots at fracture of silicone composite sheets. The compositions of samples are summarized in Table 1. Squared and circled symbols present the tensile strength and elongation, respectively. Open symbols were measured from the as-prepared samples, and filled symbols were measured from the samples after thermo-hygrostat treatment under IEC 60068 standard.

JJJRCC_2019_v32n2_116_f0004.png 이미지

Fig. 1. (a) FT-IR spectra and (b) XPS plots of hBN and s-hBN particles. S-hBN indicates hexagonal boron nitride (hBN) which is chemically modified with 3-aminopropyl triethoxysilane. Drawing in FT-IR spectra presents the 3-aminopropyl triethoxysilyl group modified on the surface of hBN particle.

Table 1. Filler compositions of the composites in this work.

JJJRCC_2019_v32n2_116_t0001.png 이미지

Acknowledgement

Supported by : 한국연구재단

References

  1. C. Y. Hsiesh and S. L. Chung, J. Appl. Polym. Sci., 102, 4734 (2006). [DOI: https://doi.org/10.1002/app.25000] https://doi.org/10.1002/app.25000
  2. Y. Nagai and G. C. Lai, J. Ceram. Soc. Jpn., 105, 197 (1997). [DOI: https://doi.org/10.2109/jcersj.105.197] https://doi.org/10.2109/jcersj.105.197
  3. S. Li, S. Qi, N. Liu, and P. Cao, Thermochim. Acta, 523, 111 (2011). [DOI: https://doi.org/10.1016/j.tca.2011.05.010] https://doi.org/10.1016/j.tca.2011.05.010
  4. I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, and L. Shi, Nano Lett., 13, 550 (2013). [DOI: https://doi.org/10.1021/nl304060g] https://doi.org/10.1021/nl304060g
  5. G. H. Lee, Y. J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, and J. Hone, Appl. Phys. Lett., 99, 243114 (2011). [DOI: https://doi.org/10.1063/1.3662043] https://doi.org/10.1063/1.3662043
  6. E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi, Phys. Rev. B, 13, 4607 (1976). [DOI: https://doi.org/10.1103/PhysRevB.13.4607] https://doi.org/10.1103/PhysRevB.13.4607
  7. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8, 902 (2008). [DOI: https://doi.org/10.1021/nl0731872] https://doi.org/10.1021/nl0731872
  8. K.M.F. Shahil and A. A. Balandin, Nano Lett., 12, 861 (2012). [DOI: https://doi.org/10.1021/nl203906r] https://doi.org/10.1021/nl203906r
  9. Y. He, B. E. Moreira, A. Overson, S. H. Nakamura, C. Bider, and J. F. Briscoe, Thermochim. Acta, 357, 1 (2000). [DOI: https://doi.org/10.1016/S0040-6031(00)00357-9] https://doi.org/10.1016/S0040-6031(00)00357-9
  10. L. C. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu, and T. J. Goh, Thermochim. Acta, 430, 155 (2005). [DOI: https://doi.org/10.1016/j.tca.2004.12.024] https://doi.org/10.1016/j.tca.2004.12.024
  11. Y. Shabany, Proc. ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258) (IEEE, San Diego, USA, 2002) p. 489.
  12. J. Kim, Y. D. Kim, D. G. Nam, J. S. Bae, J. H. Yeum, and W. Oh, J. Korean Phys. Soc., 68, 551 (2016). [DOI: https://doi.org/10.3938/jkps.68.551] https://doi.org/10.3938/jkps.68.551
  13. W. Zhao, C. Song, and P. E. Pehresson, J. Am. Chem. Soc., 124, 12418 (2002). [DOI: https://doi.org/10.1021/ja027861n] https://doi.org/10.1021/ja027861n
  14. K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff, and M. Korobov, J. Phys. Chem. B, 104, 8911 (2000). [DOI: https://doi.org/10.1021/jp002555m] https://doi.org/10.1021/jp002555m
  15. G. W. Lee, J. Kim, J. Yoon, J. S. Bae, B. C. Shin, I. S. Kim, W. Oh, and M. Ree, Thin Solid Films, 516, 5781 (2008). [DOI: https://doi.org/10.1016/j.tsf.2007.10.071] https://doi.org/10.1016/j.tsf.2007.10.071
  16. S. J. Yun, H. G. Im, and J. H. Kim, Polymer, 34, 97 (2010).