DOI QR코드

DOI QR Code

Semi-Insulating SiC Single Crystals Grown with Purity Levels in SiC Source Materials

고순도 SiC 파우더를 이용한 반절연 SiC 단결정 성장

  • Lee, Chae Young (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Choi, Jeong Min (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Kim, Dae Sung (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Park, Mi Seon (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Jang, Yeon Suk (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Lee, Won Jae (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Yang, In Seok (STC) ;
  • Kim, Tae Hee (STC) ;
  • Chen, Xiufang (State Key Laboratory of Crystal Materials, Shandong University) ;
  • Xu, Xiangang (State Key Laboratory of Crystal Materials, Shandong University)
  • Received : 2018.10.17
  • Accepted : 2018.11.14
  • Published : 2019.03.01

Abstract

The change in vanadium amount according to the growth direction of vanadium-doped semi-insulated (SI) SiC single crystals using high-purity SiC powder was investigated. High-purity SiC powder and a porous graphite (PG) inner crucible were placed on opposite sides of SiC seed crystals. SI SiC crystals were grown on 2 inch 6H-SiC Si-face seeds at a temperature of $2,300^{\circ}C$ and growth pressure of 10~30 mbar of argon atmosphere, using the physical vapor transport (PVT) method. The sliced SiC single crystals were polished using diamond slurry. We analyzed the polytype and quality of the SiC crystals using high-resolution X-ray diffraction (XRD) and Raman spectroscopy. The resistivity of the SI SiC crystals was analyzed using contactless resistivity mapping (COREMA) measurements.

JJJRCC_2019_v32n2_100_f0001.png 이미지

Fig. 1. Schematic diagram of SiC single crystal growth equipment: 1-SiC Seed, 2-porous graphite inner crucible filled VC, 3-SiC powder (99.99% purity), 4-SiC powder (99.999% purity), 5-graphite crucible.

JJJRCC_2019_v32n2_100_f0002.png 이미지

Fig. 2. Process condition by PVT Method.

JJJRCC_2019_v32n2_100_f0003.png 이미지

Fig. 3. Photographs of SiC ingots grown with powder source of 99.99% (method A) and 99.999% (Method B) and three wafers sliced wafers from different position of grown ingot (method B).

JJJRCC_2019_v32n2_100_f0004.png 이미지

Fig. 4. XRD pattern of vanadium doped SiC crystals.

JJJRCC_2019_v32n2_100_f0005.png 이미지

Fig. 5. The optical microscope and SEM & EDS image of vanadium-doped SiC crystal grown by Method A and Method B.

JJJRCC_2019_v32n2_100_f0006.png 이미지

Fig. 6. The resistivity mapping data (COREMA) of SiC wafers fabricated from SiC crystals grown on method A and method B.

JJJRCC_2019_v32n2_100_f0007.png 이미지

Fig. 7. Foreign polytype like 15 R on method B (#3) was detected by a Raman spectra analysis and different polytype exhibited different resistivity.

Table 1. GDMS data for method A and B.

JJJRCC_2019_v32n2_100_t0001.png 이미지

Acknowledgement

Supported by : 동의대학교

References

  1. M. Bickermann, R. Weingartner, and A. Winnacker, J. Cryst. Growth, 254, 390 (2003). [DOI: https://doi.org/10.1016/S0022-0248(03)01179-5] https://doi.org/10.1016/S0022-0248(03)01179-5
  2. M. E. Zvanut, V. V. Konovalov, H. Wang, W. C. Mitchel, W. D. Mitchell, and G. Landis, Jpn. J. Appl. Phys., 96, 5484 (2004). [DOI: https://doi.org/10.1063/1.1797547] https://doi.org/10.1063/1.1797547
  3. St. G. Mueller, D. Hofmann, E. N. Mokhov, M. G. Ramm, A. D. Roenkov, Y. A. Vodakov, and A. Winnacker, SIMC, 219 (1996).
  4. J. R. Jenny, M. Skowronski, W. C. Mitchel, H. M. Hobgood, R. C. Glass, G. Augustine, and R. H. Hopkins, J. Appl. Phys., 78, 3839 (1995). [DOI: https://doi.org/10.1063/1.359899] https://doi.org/10.1063/1.359899
  5. H. McD. Hobgood, R. C. Glass, G. Augustine, R. H. Hopkins, J. Jenny, M. Skowronski, W. C. Mitchel, and M. Roth, Appl. Phys. Lett., 66, 1364 (1995). [DOI: https://doi.org/10.1063/1.113202] https://doi.org/10.1063/1.113202
  6. P. Grosse, G. Basset, C. Calvat, M. Couchaud, C. Faure, B. Ferrand, Y. Grange, M. Anikin, J. M. Bluet, K. Chourou, and R. Madar, Mater. Sci. Eng., B, 61, 58 (1999). [DOI: https://doi.org/10.1016/S0921-5107(98)00445-0] https://doi.org/10.1016/S0921-5107(98)00445-0
  7. M. Bickermann, D. Hofmann, T. L. Straubinger, R. Weingartner, and A. Winnacker, Mater. Sci. Forum, 433, 51 (2003). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.433-436.51] https://doi.org/10.4028/www.scientific.net/MSF.433-436.51
  8. S. Nishino, T. Higashino, T. Tanaka, and J. Saraie, J. Cryst. Growth, 147, 339 (1995). [DOI: https://doi.org/10.1016/0022-0248(94)00658-X] https://doi.org/10.1016/0022-0248(94)00658-X
  9. P. Grosse, G. Basset, C. Calvat, M. Couchaud, C. Faure, B. Ferrand, Y. Grange, M. Anikin, J. M. Bluet, K. Chourou, and R. Madar, Mater. Sci. Eng., B, 61, 58 (1999). [DOI: https://doi.org/10.1016/S0921-5107(98)00445-0] https://doi.org/10.1016/S0921-5107(98)00445-0
  10. Q. Li, A. Y. Polyakov, M. Skowronski, E. K. Sanchez, M. J. Loboda, M. A. Fanton, T. Bogart, and R. D. Gamble, J. Appl. Phys., 97, 113705 (2005). [DOI: https://doi.org/10.1063/1.1921340] https://doi.org/10.1063/1.1921340
  11. X. Yang, K. Yang, Y. Cui, Y. peng, X. Chen, X. Xie, X. Hu, and X. Xu, A. Sin., 27, 1083 (2014).