DOI QR코드

DOI QR Code

Electrical Characteristics of Pressure Device with Graphene Oxide Composite Structure

산화 그래핀 복합소자의 압력에 따른 전기적 특성 변화 연구

  • Kim, Yong Woo (Department of Materials Engineering, Korea Polytechnic University) ;
  • Roh, Gi Yeon (Department of Materials Engineering, Korea Polytechnic University) ;
  • Sung, Hyeong Seok (Department of Materials Engineering, Korea Polytechnic University) ;
  • Choi, Woo jin (Department of Materials Engineering, Korea Polytechnic University) ;
  • Ahn, Yong Jae (Department of Materials Engineering, Korea Polytechnic University) ;
  • Lee, Seong Eui (Department of Materials Engineering, Korea Polytechnic University)
  • 김용우 (한국산업기술대학교 신소재공학과) ;
  • 노기연 (한국산업기술대학교 신소재공학과) ;
  • 성형석 (한국산업기술대학교 신소재공학과) ;
  • 최우진 (한국산업기술대학교 신소재공학과) ;
  • 안용재 (한국산업기술대학교 신소재공학과) ;
  • 이성의 (한국산업기술대학교 신소재공학과)
  • Received : 2018.09.28
  • Accepted : 2019.01.03
  • Published : 2019.03.01

Abstract

A pressure sensor is a device that converts an applied physical pressure into an electrical signal. Such sensors have a range of applications depending on the pressure level, from low to high pressure. Sensors that use physical pressure, when compared to those operating under air pressure, are not widely applied as they are inefficient. To solve this problem, graphene oxide, which exhibits good mechanical and electrical characteristics, was used to increase the efficiency of these pressure sensors. Graphene oxide has properties that control the movement of charges within the dielectric. Exploiting these properties, we evaluated the change in electrical characteristics when pressure was applied according to the ratio and thickness of the oxidation graph added to the pressure sensor.

JJJRCC_2019_v32n2_93_f0001.png 이미지

Fig. 1. Measurement method of capacitance of composite devices.

JJJRCC_2019_v32n2_93_f0002.png 이미지

Fig. 2. XRD patterns of graphene oxide, and fluoro graphene oxide.

JJJRCC_2019_v32n2_93_f0003.png 이미지

Fig. 3. Capacitance value according to pressure applied to composite devices [(a)-thickness 5 um, (b) thickness 15 um, and (c) thickness 30 um].

JJJRCC_2019_v32n2_93_f0004.png 이미지

Fig. 4. The role of the gaphene oxide in the dielectric substance.

JJJRCC_2019_v32n2_93_f0005.png 이미지

Fig. 5. Capacitance value as a result of depressurization by the amount of graphene oxide [(a) press 100 g, (b) press 300 g, and (c) press 500 g].

JJJRCC_2019_v32n2_93_f0006.png 이미지

Fig. 6. SEM images of dielectric substance (a) fluorine, (b) F-GO Fig. 6. SEM images of dielectric substance (a) fluorine, (b) F-GO

JJJRCC_2019_v32n2_93_f0007.png 이미지

Fig. 7. Pressure limit characteristics according to film thickness.

JJJRCC_2019_v32n2_93_f0008.png 이미지

Fig. 8. Current variation of F-GO (1:2) with applied voltage.

JJJRCC_2019_v32n2_93_f0009.png 이미지

Fig. 9. Current response time for pressure and graphene oxide ratio.

Table 1. Conditions for the evaluation of characteristics of F, F-GO.

JJJRCC_2019_v32n2_93_t0001.png 이미지

Table 2. Conditions for the evaluation of characteristics of F, F-GO.

JJJRCC_2019_v32n2_93_t0002.png 이미지

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. C. H. Je, C. A. Choi, S. Q. Lee, and W. S. Yang, Electron. Telecommun. Trends, 30, 21 (2015).
  2. T. Christen, L. Donzel, and F. Greuter, IEEE Electr. Insul. Magazine, 26, 47 (2010). [DOI: https://doi.org/10.1109/mei.2010.5599979] https://doi.org/10.1109/mei.2010.5599979
  3. V. Sorkin and Y. W. Zhang, J. Mol. Model., 17, 2825 (2011). [DOI: https://doi.org/10.1007/s00894-011-0972-0] https://doi.org/10.1007/s00894-011-0972-0
  4. H. Tian, Y. Shu, X. F. Wang, M. A. Mohammad, Z. Bie, Q. Y. Xie, C. Li, W. T. Mi, Y. Yang, and T. L. Ren, Sci. Rep., 5, 8603 (2015). [DOI: https://doi.org/10.1038/srep08603] https://doi.org/10.1038/srep08603
  5. A. D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A. C. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Ostling, and M. C. Lemme, Nano Lett., 13, 3237 (2013). [DOI: https://doi.org/10.1021/nl401352k] https://doi.org/10.1021/nl401352k
  6. L. Donzel, F. Greuter, and T. Christen, IEEE Electr. Insul. Magazine, 27, 18 (2011). [DOI: https://doi.org/10.1109/mei.2011.5739419] https://doi.org/10.1109/MEI.2011.5739419
  7. E. Martensson, B. Nettelbled, U. Gafvert, and L. Palmqvist, Proc. ICSD'98. Proceedings of the 1998 IEEE 6th International Conference on Conduction and Breakdown in Solid Dielectrics (Cat. No.98CH36132) (IEEE, Vasteras, Sweden, 1998) p. 548.
  8. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Prog. Mater. Sci., 56, 1178 (2011). [DOI: https://doi.org/10.1016/j.pmatsci.2011.03.003] https://doi.org/10.1016/j.pmatsci.2011.03.003
  9. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010). [DOI: https://doi.org/10.1039/b917103g] https://doi.org/10.1039/B917103G
  10. C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett., 7, 3499 (2007). [DOI: https://doi.org/10.1021/nl072090c] https://doi.org/10.1021/nl072090c