Effects of a Glycoprotein Isolated from Ulmus davidiana Nakai on Toluene-Induced Ecotoxicity and its Mechanism in Human Intestinal Epithelial Cells

소장상피세포에 있어서 느릅나무 당단백질이 톨루엔에 의해 유도된 환경독성 기작에 미치는 효과

  • Kim, Do-Wan (Department of Pharmaceutical Engineering, Daegu Haany University) ;
  • Kim, Ji-Yun (Department of Pharmaceutical Engineering, Daegu Haany University) ;
  • Park, Moon-Ki (Department of Pharmaceutical Engineering, Daegu Haany University) ;
  • Lee, Sei-Jung (Department of Pharmaceutical Engineering, Daegu Haany University)
  • 김도완 (대구한의대학교 제약공학과) ;
  • 김지윤 (대구한의대학교 제약공학과) ;
  • 박문기 (대구한의대학교 제약공학과) ;
  • 이세중 (대구한의대학교 제약공학과)
  • Received : 2019.01.18
  • Accepted : 2019.02.12
  • Published : 2019.02.28


Ulmus davidiana Nakai (UDN) has been traditionally used as a herbal medicine to treat inflammatory diseases in Korea. In the present study, we investigated the anti-ecotoxic potential of a 116 kDa glycoprotein isolated from UDN (UDN glycoprotein) in human intestinal epithelial INT-407 cells. We demonstrated that UDN glycoprotein ($20{\mu}g/mL$) could inhibit the production of lactate dehydrogenase (LDH) induced by toluene, an ecotoxic substance. Additionally, we found that the toluene-induced intestinal cytotoxicity was mediated by the phosphorylation of p38 Mitogen-Activated Protein Kinase (MAPK) via the production of intracellular Reactive Oxygen Species (ROS). The UDN glycoprotein significantly decreased the levels of ROS production and p38 MAPK activation in toluene-stimulated INT-407 cells. Moreover, the UDN glycoprotein inhibits the phosphorylation of nuclear factor-kappa B ($NF-{\kappa}B$), which is responsible for the production of LDH, in toluene-stimulated INT-407 cells. Collectively, our data indicate that UDN glycoprotein is a natural antioxidant and a modulator of ecotoxicity signaling pathways in human intestinal epithelial cells.


Ulmus davidiana Nakai (UDN) glycoprotein;Intestinal epithelial cells;Reactive oxygen species;$NF-{\kappa}B$;Toluene


Supported by : 경산시


  1. Beyaert, R., Cuenda, A., Vanden Berghe, W., Plaisance, S., Lee, J. C., Haegeman, G., Cohen, P., Fiers, W., 1996, The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor, EMBO J., 15, 1914-1923.
  2. Birkedal-Hansen, H., 1993, Role of cytokines and inflammatory mediators in tissue destruction, J. Periodontal Res., 28, 500-510.
  3. Csete, M., 2005, Oxygen in the cultivation of stem cells, Ann. N Y Acad Sci., 1049, 1-8.
  4. Dere, E., Ari, F., 2009, Effect of benzene on liver functions in rats (Rattus norvegicus), Environ Monit Assess, 154, 23-27.
  5. Filley, C. M., Halliday, W., Kleinschmidt-DeMasters, B. K., 2004, The effects of toluene on the central nervous system, J Neuropathol Exp Neurol, 63, 1-12.
  6. Foo, S. C., Jeyaratnam, J., Koh, D., 1990, Chronic neurobehavioural effects of toluene, Br J Ind Med., 47, 480-84.
  7. Ko, J. H., Lee, S. J., Lim, K. T., 2005, 116 kDa glycoprotein isolated from Ulmus davidiana Nakai (UDN) inhibits glucose/glucose oxidase (G/GO)-induced apoptosis in BNL CL.2 cells, J Ethnopharmacol, 100, 339-346.
  8. Lee, E. H., Park, C. W., Jung, Y. J., 2013a, Anti-inflammatory and immune-modulating effect of Ulmus davidiana var. japonica Nakai extract on a macrophage cell line and immune cells in the mouse small intestine, J Ethnopharmacol, l 146, 608-613.
  9. Lee, H. S., Jang, M. S., Kim, J. H., Hong, C. P., Lee, E. J., Jeun, E. J., Kim, C., Kim, E. K., Ahn, K. S., Yang, B. G., Ahn, K. S., Jang, Y. P., Ahn, K. S., Kim, Y. M., Jang, M. H., 2013b, Ulmus davidiana var. japonica Nakai upregulates eosinophils and suppresses Th1 and Th17 cells in the small intestine, PLoS One, 8, e76716.
  10. Lee, S. J., Heo, K. S., Oh, P. S., Lim, K., Lim, K. T., 2004, Glycoprotein isolated from Ulmus davidiana Nakai inhibits TPA-induced apoptosis through NF-${\kappa}B$ in NIH/3T3 cells, Toxicol Lett, 146, 159-174.
  11. Lee, S. J., Lim, K. T., 2009, Glycine- and proline-rich glycoprotein regulates the balance between cell proliferation and apoptosis for ACF formation in 1,2-dimethylhydrazine-treated A/J mice, Mol Cell Biochem, 325, 187-197.
  12. Liu, Y., Gorospe, M., Yang, C., Holbrook, N. J., 1995, Role of MAPK phosphatase during the cellular response to genotoxic stress. Inhibition of c-Jun N-terminal kinase activity and AP-1-dependent gene activation, J Biol Chem, 270, 8377-8380.
  13. Lolin, Y., 1989, Chronic neurological toxicity associated with exposure to volatile substances, Hum. Toxicol, 8, 293-300.
  14. Mattia, C. J., LeBel, C. P., Bondy, S. C., 1991, Effects of toluene and its metabolites on cerebral reactive oxygen species generation, Biochem Pharm, 42, 879-882.
  15. Morvai, V., Hudak, A., Ungvary, G., Varga, B., 1976, ECG changes in benzene, toluene and xylene poisoned rats, Acta Med Acad Sci Hung, 33, 275-286.
  16. Neville, D. M., Jr., Glossmann, H., 1974, Molecular weight determination of membrane protein and glycoprotein subunits by discontinuous gel electrophoresis in dodecyl sulfate, Methods Enzymol, 32, 92-102.
  17. Raingeaud, J., Gupta, S., Rogers, J. S., Dickens, M., Han, J., Ulevitch, R. J., Davis, R. J., 1995, Pro-inflammatory cytokines and environmental stress cause p38 MAPK activation by dual phosphorylation on tyrosine and threonine, J Biol Chem, 270, 7420-7426.
  18. Revilla, A. S., Pestana, C. R., Pardo-Andreu, G. L., Santos, A. C., Uyemura, S. A., Gonzales, M. E., Curti, C., 2007, Potential toxicity of toluene and xylene evoked by mitochondrial uncoupling, Toxicol In Vitro, 21, 782-788.
  19. Saha, R. N., Jana, M., Pahan, K., 2007, MAPK p38 regulates transcriptional activity of NF-${\kappa}B$ in primary human astrocytes via acetylation of p65, J Immunol, 179, 7101-7109.
  20. Sarma, S. N., Kim, Y. J., Song, M., Ryu, J. C., 2011, Induction of apoptosis in human leukemia cells through the production of reactive oxygen species and activation of HMOX1 and Noxa by benzene, toluene, and o-xylene, Toxicology, 280, 109-117.
  21. Shim, J. U., Lee, S. J., Oh, P. S., Lim, K. T., 2007, Glycoprotein isolated from morus indica linne has an antioxidative activity and inhibits signal factors induced by bisphenol A in Raw 264.7 Cells, Korean J Food Sci Technol, 39, 209-216.
  22. Simon, H. U., Haj-Yehia, A., Levi-Schaffer, F., 2000, Role of reactive oxygen species in apoptosis induction, Apoptosis, 5, 415-418.
  23. Son, Y., Kim, S., Chung, H. T., Pae, H. O., 2013, Reactive oxygen species in the activation of MAPK, Methods Enzymol, 528, 27-48.
  24. Stadtman, E. R., 2001, Protein oxidation in aging and age-related diseases, Ann. N Y Acad Sci., 928, 22-38.
  25. Um, M. Y., Choi, W. H., Ahn, J. Y., Ha, T. Y., 2013, Effects of ethanolic extract of Ulmus davidiana root on lipid metabolism in high-fat diet fed mice, Korean J Food Nut, 26, 8-14.
  26. Yamaguchi, F., Yoshimura, Y., Nakazawa, H., Ariga, T., 1999, Free radical scavenging activity of grape seed extract and antioxidants by electron spin resonance spectrometry in an $H_2O_2$/NaOH/DMSO system, J Agric Food Chem, 47, 2544-2548.
  27. Yoshida, T., Ogawa, M., Goto, H., Ohshita, A., Kurose, N., Yokosawa, F., Hirata, M., Endo, Y., 2011, Clinical findings of the patients with sick building syndrome and the results of environmental measurement, Sangyo Eiseigaku Zasshi, 53, 25-32.