DOI QR코드

DOI QR Code

Basic Study for Harvesting Unused Energy based on Plant-Microbial Electrochemical Technology

식물-미생물전기화학 기반의 미활용 에너지 회수 기초 연구

  • Yu, Jaecheul (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Shin, Choon Hwan (Department of Energy & Environmental Engineering, Dongseo University)
  • 유재철 (부산대학교 사회환경시스템 공학과) ;
  • 신춘환 (동서대학교 에너지환경 공학과)
  • Received : 2018.12.05
  • Accepted : 2019.02.08
  • Published : 2019.02.28

Abstract

In this study, we evaluated the energy production from plant-microbial fuel cells using representative indoor plants, such as Scindapsus aureus and Clatha minor. The maximum power density of microbial fuel cell (MFC) using S. aureus ($3.36mW/m^2$) was about 2 times higher than that of the MFC using C. minor ($1.43mW/m^2$). It was confirmed that energy recovery is possible using plant-MFCs without fuel. However, further research is needed to improve the performance of plant-MFCs. Nevertheless, plant-MFCs have proved their potential as a novel energy source to overcome the limitations of the conventional renewable energy sources such as wind power and solar cells, and could be employed to a power source for the sensor in charge of the fourth industrial revolution.

Keywords

Plant;Microbial fuel cell;Renewable energy;Scindapsus aureus;Clatha minor

Acknowledgement

Supported by : 한국연구재단

References

  1. Ahn, J. H., Jeong, W. S., Choi, M. Y., Kim, B. Y., Song, J., Weon, H. Y., 2014, Phylogenetic diversity of dominant bacterial and archaeal communities in plant-microbial fuel cells using rice plants, Journal of Microbiology and Biotechnology, 24(12), 1707-1718. https://doi.org/10.4014/jmb.1408.08053
  2. Arends, J. B., Speeckaert, J., Bolndeel, E., De Vrieze, J., Boeckx, P., Verstraete, W., Rabaey, K., Boon N., 2014, Greenhouse gas emissions from rice microcosms amended with a plant microbial fuel cell, Applied Microbiology and Biotechnology, 98, 3205-3217. https://doi.org/10.1007/s00253-013-5328-5
  3. Bombelli, P., Dennis, R. J., Felder, F., Cooper, M. B., Iyer, D. M. R., Royles, J., Harrison, S. T., Smith, A. G., Harrison, C. J., Howe, C. J., 2016, Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor, Royal Society Open Science, 3(10), 160249 https://doi.org/10.1098/rsos.160249
  4. Chiranjeevi, P., Mohanakrishna, G., Mohan, S. V., 2012, Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through $CO_2$ sequestration, Bioresource Technology, 124, 364-370. https://doi.org/10.1016/j.biortech.2012.08.020
  5. Chun, J. E., Yu, J. C., Park, Y. H., Seon, J. Y., Cho, C. J., Lee, T. H., 2012, Acceleration of biological denitrification by using bioelectrochemical reactor, Journal of the Environmental Sciences, 20(8), 989-996. https://doi.org/10.3321/j.issn:1001-0742.2008.08.016
  6. Deng, H., Chen, Z., Zhao, F., 2012, Enegy from plants and microorganisms: Progress in plant-microbial fuel cells, ChemSusChem, 5, 1006-1011. https://doi.org/10.1002/cssc.201100257
  7. Habibul, N., Hu, Y., Wang, Y. K., Chen, W., Yu, H. Q., Sheng, G. P., 2016, Bioelectrochemical chromium(VI) removal in plant-microbial fuel cells, Environmental Science and Technology, 50, 3882-3889. https://doi.org/10.1021/acs.est.5b06376
  8. Helder, M., 2012, Design criteria for the plant-microbial fuel cell, PhD. thesis, Wageningen University, Netherlands.
  9. Helder, M., Strik, D. P., Hamelers, H. V., Kuhn, A. J., Block, C., Buisman, C. J., 2010, Concurrent bioelectricity and biomass production in three plant-micorbial fuel cells using Spartina anglica, Arudinella anmala and Arundo donax, Bioresource Technology, 101, 3541-3547. https://doi.org/10.1016/j.biortech.2009.12.124
  10. Kaku, N., Yonezawa, N., Kodama, Y., Watanabe, K., 2008, Plant/microbe cooperation for electricity generation in a rice paddy field, Applied Microbiology and Biotechnology, 79, 43-49. https://doi.org/10.1007/s00253-008-1410-9
  11. Klaisongkram, N., Holasut, K., 2015, Electricity generation of Plant Microbial Fuel Cell (PMFC) using Cyperus Involucratus R, KKU Engineering Journal, 42, 117-124.
  12. Korea Energy Agency(KEA), 2018, 2018 Korea Energy Agency Handbook.
  13. Kouzuma, A., Kasai, T., Nakagawa, G., Yamamuro, A., Abe, T., Watanabe, K., 2013, Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells, PLoS One, 8, e77443 https://doi.org/10.1371/journal.pone.0077443
  14. Liu, S., Song, H., Li, X., Yang, F., 2013, Power generation enhancement by utilizing plant photosynthate in microbial fuel cell coupled constructed wetland system, International Journal of Photoenergy, 1-10.
  15. Logan, B. E., Wallack, M. J., Kim, K., He, W., Feng, Y., Saikaly, P. E., 2015, Assessment of microbial fuel cell configurations and power densities. Environmental Science & Technology Letters, 2(8), 206-214. https://doi.org/10.1021/acs.estlett.5b00180
  16. Mohan, S.V., Mohanakrishna, G., Chirnajeevi, P., 2011, Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment, Bioresource Technology, 102(14), 7036-7042. https://doi.org/10.1016/j.biortech.2011.04.033
  17. Nitisoravut, R., Regmi, R., 2017, Plant microbial fuel cells: A promising biosystems engineering, Renewable and Sustainable Energy Reviews, 76, 81-89. https://doi.org/10.1016/j.rser.2017.03.064
  18. Oh, S. T., Kim, J. R., Premier, G. C., Lee, T. H., Kim, C., Sloan, W. T., 2010, Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnology Advances, 28(6), 871-881. https://doi.org/10.1016/j.biotechadv.2010.07.008
  19. Priya, S., Daniel, J. I. (ed). 2009, Energy harvesting technologies, New York: Springer.
  20. Rabaey, K., Rozendal, R. A., 2010, Microbial electrosynthesis-revising the electrical route for microbial production, Natrue Reviews Microbiology, 8(10), 706-717. https://doi.org/10.1038/nrmicro2422
  21. Rosenbaum, M., He, Z., Angenent, L. T., 2010, Light energy to bioelectricity: Photosynthetic microbial fuel cells, Current Opinion in Biotechnology, 21(3), 259-264. https://doi.org/10.1016/j.copbio.2010.03.010
  22. Sarma, P. J., Mohanty, K., 2018, Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bioelectricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode, Journal of Bioscience and Bioengineering, 126(3), 404-410. https://doi.org/10.1016/j.jbiosc.2018.03.009
  23. Trimmers, R. A., Strik, D. O., Hamelers, H. V., Buisman, C. J., 2010, Long-term performance of a plant microbial fuel cell with Spartina anglica. Appled Microbiology and Biotechnology, 86, 973-981. https://doi.org/10.1007/s00253-010-2440-7
  24. Yu, J., Seon, J., Park, Y., Cho, S., Lee, T., 2012, Electricity generation and microbial community in a submerged-exchangeable microbial fuel cell system for low-strength domestic wastewater treatment. Bioresource technology, 117, 172-179. https://doi.org/10.1016/j.biortech.2012.04.078