Multi-Source Based Energy Harvesting Architecture for IoT and Wearable System

IoT 및 웨어러블 시스템을 위한 멀티 소스 기반 에너지 수확 구조

  • 박현문 (전자부품연구원 SoC 플랫폼 연구센터) ;
  • 권진산 (전자부품연구원 SoC 플랫폼 연구센터) ;
  • 김병수 (전자부품연구원 SoC 플랫폼 연구센터) ;
  • 김동순 (전자부품연구원 SoC 플랫폼 연구센터)
  • Received : 2018.11.22
  • Accepted : 2019.02.15
  • Published : 2019.02.28


By using the Triboelectric nanogenerators, known as TENG, we can take advantages of high conversion efficiency and continuous power output even with small vibrating energy sources. Nonlinear energy extraction techniques for Triboelectric vibration energy harvesting usually requires synchronized active electronic switches in most electronic interface circuits. This study presents a nonlinear energy harvesting with high energy conversion efficiency to harvest and save energies from human active motions. Moreover, the proposed design can harvest and store energy from sway motions around different directions on a horizontal plane efficiently. Finally, we conducted a comparative analysis of a multi-mode energy storage board developed by a silicon-based piezoelectricity and a transparent TENG cell. As a result, the experiment showed power generation of about 49.2mW/count from theses multi-fully harvesting source with provision of stable energy storages.

KCTSAD_2019_v14n1_225_f0001.png 이미지

그림 1. 제안된 EHSS 시스템 구조 Fig 1. Proposed EHSS system architecture

KCTSAD_2019_v14n1_225_f0002.png 이미지

그림 2. 다중 하베스터 입력이 가능한 EHSS 하드웨어 모듈 (a) 모듈 뒤 (b) 모듈 앞 Fig 2. The EHSS hardware module with multi-Harvester inputs (a) front of module (b) back of module

KCTSAD_2019_v14n1_225_f0003.png 이미지

그림 3. EHSS 시스템 상세 구조 Fig 3. Detailed structure of the EHSS system

KCTSAD_2019_v14n1_225_f0004.png 이미지

그림 4. 측정과 분석을 위한 EHSS 시스템 구성 Fig 4. the EHSS system configuration for measurement and analysis

KCTSAD_2019_v14n1_225_f0005.png 이미지

그림 5. EHSS에 연결된 하베스터들의 전압 측정 Fig 5. Circuit measurement of an input voltage on the EHSS with harvesters

KCTSAD_2019_v14n1_225_f0006.png 이미지

그림 6. 하베스터로부터 저장되는 저장소 #1의 전압 변화 Fig 6. Voltage change of the STORE #1 stored from harvester source.

KCTSAD_2019_v14n1_225_f0007.png 이미지

그림 7. PMIC로 인해 저장되는 저장소#2의 DC 전압 과 전류의 변화 Fig 7. Change DC voltage and current states of the STORE #2 stored from the PMIC

KCTSAD_2019_v14n1_225_f0008.png 이미지

그림 8. PMIC에서 최종 출력되는 DC 전압 변화.(3.28V 출력) Fig 8. The DC voltage change states of ultimately output from the PMIC (swing out 3.28V)

KCTSAD_2019_v14n1_225_f0009.png 이미지

그림 9. PMIC를 통한 최종 충력 Fig 9. The PMIC output current status


Grant : 웨어러블 디바이스용 플랙서블 전원 공급 모듈 및 장치 개발

Supported by : 산업기술평가관리원(KEIT)


  1. W. Wu, S. Bai, M. Yiam, Y. Qin, Z. L. Wang, and T. Jing, "Lead Zirconate Titanate Nanowire Textile Nanogenerator for Wearable Energy-Harvesting and Self-Powered Devices," J. of ACS Nano, vol. 6, no. 7, 2012, pp. 6231-6235.
  2. K. Jan, T. Beckedahl, and L. M. Reindl, "Medlay: A Reconfigurable Micro-Power Management to Investigate Self-Powered Systems," J. of Sensors, vol. 18, no. 1, 2018, pp. 259-275.
  3. H. Park, B. Kim, and D. Kim, "An multiple energy harvester with an improved Energy Harvesting platform for Self-Power Wearable device," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 1, 2018, pp. 153-162.
  4. M. Ku, W. Li, Y. Chen, and R. Liu, "Advances in Energy Harvesting Communications: Past, Present, and Future Challenges," IEEE Communications Surveys & Tutorials, vol. 96, no. 9, 2015, pp. 1384-1412.
  5. M. Ha, J. Park, Y. Lee, and H. Ko, "Triboelectric generators and sensors for selfpowered wearable electronics," J. of ACS Nano, vol. 9, no. 4, 2015, pp. 3421-3427.
  6. M. Dini, A. Romani, M. Bottarel, V. Ricotti, G. Ricotti, and M. Tartagni, "A Nano-current Power Management IC for Multiple Hetero-geneous Energy Harvesting Sources," J. of IEEE Transactions on Power Electronics, vol. 30, no. 10, 2015, pp. 5665-5680.
  7. H. M. Park, B. S. Kim, and D. S. Kim, "Development of Energy Harvesting Board Considering Ultra-Low Power based on TENG's," Advanced Science and Technology Letters, Hokkaido, Japan, 2018, pp. 182-189.
  8. J. Estrada-Lopez, A. Abuellil, Z. Zeng, and E. Sanchez-Sinencio, "Multiple Input Energy Harvesting Systems for Autonomous IoT End-Nodes," J. of Low Power Electronics and Application vol. 8, no. 1, 2018, pp. 2-14.
  9. G. Yu, K. Chew, Z. Sun, H. Tang, and L. Siek, "A 400 nW single-inductor dual-input-tri-output DC-DC buck-boost converter with maximum power point tracking for indoor photovoltaic energy harvesting," IEEE Journal of Solid-State Circuits, vol. 50, no. 11, 2015, pp. 2758-2772.
  10. Y. Kuang, T. Ruan, Z. H. Chew, and M. Zhu, "Energy harvesting during human walking to power a wireless sensor node," J. of Sensors and Actuators A: Physical, vol. 254, no. 1, 2016, pp. 69-77.
  11. Q. Cheng, Z. Peng, J. Lin, S. Li, and F. Wang, "Energy harvesting from human motion for wearable devices," Nano/Micro Engineered and Molecular Systems (NEMS), 2015 IEEE 10th International Conf., Xi'an, China, 2015, pp. 1-7.
  12. P. Green, E. Papatheou, and N. Sims, "Energy harvesting from human motion and bridge vibrations: An evaluation of current nonlinear energy harvesting solutions," J. of Intelligent Material Systems and Structures, vol. 24, no. 12, 2013, pp. 1494-1505.
  13. H. Park, B. Kim, and D. Kim, "A Development of P-EH(Practical Energy Harvestger Platform for Non-linear Energy Harvesting Environment in Wearable Device," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 5, 2018, pp. 1093-1100.
  14. H. Hyun and J. Lee, "A Study on the modeling and operation control of a variable speed synchronous wind power system," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 8, 2015, pp. 935-944.